[1] 赵可夫,范海. 盐生植物及其对盐渍生境的适应生理[M]. 北京: 科学出版社, 2004. [2] 石德成,殷立娟. 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J]. 植物学报, 1993, 35: 144-149. [3] 杨春武,李长有,张美丽,等. 盐、碱胁迫下小冰麦体内的pH及离子平衡[J]. 应用生态学报, 2008, 19(5): 1000-1005. [4] 秦峰梅,张红香,武祎,等.盐胁迫对黄花苜蓿发芽及幼苗生长的影响[J]. 草业学报,2010,19(4): 71-78. [5] 景艳霞,袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J].草业学报, 2011, 20(2): 134-139. [6] 邹丽娜,周志宇,颜淑云,等.盐分胁迫对紫穗槐幼苗生理生化特性的影响[J].草业学报, 2011, 20(3): 84-90. [7] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. [8] Blumwald E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12: 431-434. [9] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants[J]. Crop Science, 2005, 45: 437-448. [10] Flowers T J, Hajibagheri M A, Clipson N J W. Halophytes[J]. Quarterly Review of Biology, 1986, 61: 31-37. [11] Song J, Feng G, Tian C Y, et al. Osmotic adjustment traits of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions[J]. Plant Science, 2006, 170: 113-119. [12] Ashraf M, Bashir A. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance[J]. Flora, 2003, 198: 486-498. [13] 李博. 中国的草原[M]. 北京: 科学出版社, 1990. [14] 祝廷成. 羊草生物生态学[M]. 吉林: 吉林科学技术出版社, 2004. [15] Jin H, Plaha P, Park J Y, et al. Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil[J]. Plant Science, 2006, 175: 784-792. [16] 黄泽豪,朱锦懋,母锡金,等. 羊草有性繁殖力低的成因研究进展[J]. 中国草地学报, 2002, 24: 55-60. [17] 杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J]. 植物学报, 1995, 37(2): 147-153. [18] 刘公社,齐冬梅. 羊草生物学研究进展[J]. 草业学报, 2004, 13: 6-11. [19] 李迠东. 我国的羊草草原[J]. 东北师范大学学报(自然科学版), 1978, 1: 145-159. [20] Jin H, Kim H R, Plaha P, et al. Expression profiling of the genes induced by Na2CO3 and NaCl stresses in leaves and roots of Leymus chinensis[J]. Plant Science, 2008, 175: 784-792. [21] 周婵,杨允菲. 松嫩平原两个生态型羊草实验种群对盐碱胁迫的生理响应[J]. 应用生态学报, 2003, 14(11): 1842-1846. [22] 石德成,殷立娟. Na2CO3胁迫下羊草苗的胁变反应及其数学分析[J]. 植物学报, 1992, 34(3): 386-393. [23] 石德成,盛艳敏,赵可夫.不同盐浓度的混合盐对羊草苗的胁迫效应[J]. 植物学报, 1998,40(12): 1136-1142. [24] Sun Y L, Hong S K. Effects of plant growth regulators and L-glutamic acid on shoot organogenesis in the halophyte Leymus chinensis (Trin.)[J]. Plant Cell Tissue and Organ Culture, 2010, 100: 317-328. [25] Ding X M, Yang Y F. Variations of water-soluble carbohydrate contents in different age class modules of Leymus chinensis populations in sandy and saline-alkaline soil on the Songnen Plains of China[J]. Journal of Integrative Plant Biology, 2007, 49(5): 576-581. [26] Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.)[J]. Plant Growth Regulation, 2008, 56(2): 179-190. [27] 刘文辉,周青平,颜红波,等.青海扁茎早熟禾种群地上生物量积累动态[J]. 草业学报,2009,18(2): 18-24. [28] 王洪义,王正文,李凌浩,等. 不同生境中克隆植物的繁殖倾向[J]. 生态学杂志, 2005, 24(6): 670-676. [29] Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae)[J]. Environmental and Experimental Botany, 2010, 68(1): 66-74. [30] Yang C W, Jianaer A, Li C Y, et al. Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata[J]. Photosynthetica, 2008, 46(2): 273-278. [31] Yang C W, Wang P, Li C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J]. Photosynthetica, 2008, 46(1): 107-114. [32] Taiz L, Zeiger E. Plant Physiology (3rd Edit)[M]. Sunderland: Sinauer Ass, 2002. [33] Flexas J, Bota J, Escalona J M, et al. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations[J]. Functional Plant Biology, 2002, 29: 461-471. [34] El-hafid R, Smith D H, Karrou M, et al. Physiological attributes associated with early-season drought resistance in spring durum wheat cultivars[J]. Canadian Journal of Plant Science, 1998, 78: 227-237. [35] Clark H, Newton P C D, Barker D J. Physiological and morphological responses to elevated CO2 and a soil moisture deficit of temperate pasture species growing in an established plant community[J]. Journal of Experimental Botany, 1999, 50: 233-242. [36] Li X Y, Liu J J, Zhang Y T, et al. Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses[J]. Soil Science and Plant Nutrition, 2009, 55: 680-684. [37] Yang C W, Xu H H, Wang L L, et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants[J]. Photosynthetica, 2009, 47: 79-86. [38] Greenway H, Munns R. Interactions between growth, uptake of Cl and Na, and water relations of plants in saline environments[J]. Plant Cell and Environment, 1983, 6: 575-589. [39] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany, 2002, 47: 39-50. [40] Benlloch-Gonzalez M, Fournier J M, Famos J, et al. Strategies underlying salt tolerance in halophytes are present in Cynara cardunculus[J]. Plant Science, 2005, 168: 653-659. [41] Silveira J A G, Araujo S A M, Lima J P M, et al. Roots and leaves display contrasting osmotic adjustment mechanisms in responses to NaCl-salinity in Atriplex nummularia[J]. Environmental and Experimental Botany, 2009, 66(1): 1-8. [42] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60: 324-349. [43] Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6: 441-445. [44] Marschner H. Mineral Nutrition of Higher Plants (sencond ed)[M]. London: Academic Press, 1995. [45] Davenport R J, Reid R J, Smith F A. Sodium-calcium interactions in two wheat species differing in salinity tolerance[J]. Physiologia Plantarum, 1997, 99: 323-327. [46] Wenxue W, Bilsborrow P E, Hooley P, et al. Salinity induced differences in growth, ion distribution and partioniong in barley between the cultivar Maythorpe and its derived mutant Golden Promise[J]. Plant and Soil, 2003, 250: 183-191. [47] Shi D C, Wang D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag[J]. Plant and Soil, 2005, 271: 15-26. [48] 杨春武,李长有,张美丽,等.碱胁迫下小冰麦体内的pH及离子平衡[J].应用生态学报, 2008, 19(5): 1000-1005. |