Reference:[1]Mitchell J E, West N E, Miller R W. Soil physical properties in relation to plant community patterns in the shadscale zone of northwestern Utah[J]. Ecology, 1966, 47(4): 627-630.[2]Huang D Q, Yu L, Zhang Y S et al. Belowground biomass and its relationship to environmental factors of natural grassland on the northern slopes of the Qilian Mountains[J]. Acta Prataculturae Sinica, 2011, 20(5): 1-10.[3]Wang C T, Long R J, Wang G X et al. Relationship between plant communities, characters, soil physical and chemical properties,and soil microbiology in alpine meadows[J]. Acta Prataculturae Sinica, 2010, 19(6): 25-34.[4]Wu G L, Ren G H, Wang D, et al. Above-and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China[J]. Journal of Hydrology, 2012, 476: 120-127.[5]Su Y, Jiao J Y, Wang Q L. Seedling banks and their relationship with the standing vegetation under different erosion environments in the hill-gully Loess Plateau region[J]. Acta Prataculturae Sinica, 2013, 22(5): 154-164.[6]Yang Y, Han G D, Li Y H, et al. Response of soil respiration to grazing intensity, water contents, and temperature of soil in different grasslands of Inner Mongolia[J]. Acta Prataculturae Sinica, 2012, 21(6): 8-14.[7]Zhang N, Liang Y M. Studies on the below-ground/above-ground biomass ratio of natural grassland in loess hilly region[J]. Acta Prataculturae Sinica, 2002, 11(2): 72-78.[8]Kardol P, Cregger M A, Campany C E, et al. Soil ecosystem functioning under climate change: plant species and community effects[J]. Ecology, 2010, 91(3): 767-781.[9]Liu G H. Fu B J. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 2001, 16(1): 71-78.[10]Ren J Z, Liang T G, Lin H L et al. Study on grassland's responses to global climate change and its carbon sequestration potentials[J]. Acta Prataculturae Sinica, 2011, 20(2): 1-22.[11]Li Y Z, Fan J W, Zhang L X et al. The impact of different land use and management on community composition, species diversity and productivity in a typical temperate grassland[J]. Acta Prataculturae Sinica, 2013, 22(1): 1-9.[12]Zheng F L. Impact of vegetation destruction and restoration on soil evolution in Ziwu mountain forest area[J]. Bulletin of Soil and Water Conservation, 1996, 16(5): 41-44.[13]Bai Y F, Li L H, Wang Q B. Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin river basin, Inner Mongolia[J]. Chinese Journal of Plant Ecology, 2000, 24(6): 667-673.[14]Huang D Q, Yu L, Zhang Y S et al. Above-ground biomass and its relationship to soil moisture of Natural Grassland in the Northern Slopes of the Qilian Mountains[J]. Acta Prataculturae Sinica, 2011, 20(3): 20-27.[15]Su R, Jiao J Y, Ma X H. Seasonal Variation of Aboveground Biomass of Main Plant Communities and Its Relationship with Soil Moisture in the Hill-gully Loess Plateau[J]. Research of Soil and Water Conservation, 2012, 19(6): 7-12.[16]Zhang L M, Shangguan Z P. Relationship between the Soil Moisture and the Vegetation Productivity in the Loess Plateau[J]. Arid Zone Research, 2002, 19(4): 59-63.[17]Wang G J, Wang S P, Hao Y B et al. Effect of grazing on the plant functional group diversity and community biomass and their relationship along a precipitation gradient in Inner Mongolia Steppe[J]. Acta Ecologica Sinica, 2005, 25(7): 1649-1656.[18]Bai C L, A L T, Chen H J et al. Effects of addition of nitrogen and water on plant community characteristics of stipa breviflora desert steppe[J]. Chinese Journal of Grassland, 2013, 35(2): 69-75.[19]Dong S K, Ding L M, Xu M Y et al. Effect of grazing intensity on leaf characteristics and forage productivity on mixed pastures of perennial grasses in alpine region of Tibetan Plateau[J]. Scientia Agricultura Sinica, 2004, 37(1): 136-142.[20]Wang W, Jiang W L, Xie Z K et al. Study on soil water in rhizosphere and root system distribution of Nitraria tangutorum on Loess Plateau[J]. Acta Prataculturae Sinica, 2013, 22(1): 20-28.[21]Fu B J, Wang J, Ma K M. Effects of land use on soil moisture in loess hilly and gully region of China[J]. Science Foundation in China, 1999, 4: 225-227.[22]Hu L J, Shao M A. Review on water eco-environment in vegetation restoration in Loess Plateau[J]. Chinese Journal of Applied Ecology, 2002, 13(8): 1045-1048.[23]Wu C H, Chen Y M, Wang G L. Characteristics of Typical Communities in relation to environmental factors in the Loess hilly region[J]. Journal of Soil and Water Conservation, 2008, 22(3): 64-69.[24]Zang Y M, Zhu Z H, Li Y N et al. Effects of species diversity and functional diversity on primary productivity of alpine meadow[J]. Chinese Journal of Ecology, 2009, 28(6): 999-1005.[25]Zhou Z C, Shangguan Z P. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China[J]. Plant and Soil, 2007, 291: 119-129.[26]Wang Z W, Xing F, Zhu T C et al. The responses of functional group composition and pecies diversity of aneurolepidium Chinese grassland to flooding disturbance on Songen Plain, Northeastern China[J]. Chinese Journal of Plant Ecology, 2002, 26(6): 708-716.[27]Wang J, Liu W Z, Zhong L P et al.Spatial variability of soil moisture and aboveground biomass of Medicago sativa under long term continuous planting[J]. Acta Prataculturae Sinica, 2009, 18(4): 41-46.参考文献:[1]Mitchell J E, West N E, Miller R W. Soil physical properties in relation to plant community patterns in the shadscale zone of northwestern Utah[J]. Ecology, 1966, 47(4): 627-630.[2]黄德青, 于兰, 张耀生, 等. 祁连山北坡天然草地地下生物量及其与环境因子的关系[J]. 草业学报, 2011, 20(5): 1-10.[3]王长庭, 龙瑞军, 王根绪, 等. 高寒草甸群落地表植被特征与土壤理化性状, 土壤微生物之间的相关性研究[J]. 草业学报, 2010, 19(6): 25-34.[4]Wu G L, Ren G H, Wang D,et al. Above-and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China[J]. Journal of Hydrology, 2012, 476: 120-127.[5]苏嫄, 焦菊英, 王巧利. 黄土丘陵沟壑区不同侵蚀环境下幼苗库及其与地上植被的关系[J]. 草业学报, 2013, 22(5): 154-164.[6]杨阳, 韩国栋, 李元恒, 等. 内蒙古不同草原类型土壤呼吸对放牧强度及水热因子的响应[J]. 草业学报, 2012, 21(6): 8-14.[7]张娜, 梁一民. 黄土丘陵区天然草地地下/地上生物量的研究[J]. 草业学报, 2002, 11(2): 72-78.[8]Kardol P, Cregger M A, Campany C E,et al. Soil ecosystem functioning under climate change: plant species and community effects[J]. Ecology, 2010, 91(3): 767-781.[9]刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 2001, 16(1): 71-78.[10]任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究[J]. 草业学报, 2011, 20(2): 1-22.[11]李愈哲, 樊江文, 张良侠, 等. 不同土地利用方式对典型温性草原群落物种组成和多样性以及生产力的影响[J]. 草业学报, 2013, 22(1): 1-9.[12]郑粉莉. 子午岭林区植被破坏与恢复对土壤演变的影响[J]. 水土保持通报, 1996, 16(5): 41-44.[13]白永飞, 李凌浩, 王其兵. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J]. 植物生态学报, 2000, 24(6): 667-673.[14]黄德青, 于兰, 张耀生, 等. 祁连山北坡天然草地地上生物量及其与土壤水分关系的比较研究[J]. 草业学报, 2011, 20(3): 20-27.[15]苏嫄, 焦菊英, 马祥华. 黄土丘陵沟壑区主要群落地上生物量季节变化及其与土壤水分的关系[J]. 水土保持研究, 2012, 19(6): 7-12.[16]张雷明, 上官周平. 黄土高原土壤水分与植被生产力的关系[J]. 干旱区研究, 2002, 19(4): 59-63.[17]王国杰, 汪诗平, 郝彦宾, 等. 水分梯度上放牧对内蒙古主要草原群落功能群多样性与生产力关系的影响[J]. 生态学报, 2005, 25(7): 1649-1656.[18]白春利, 阿拉塔, 陈海军, 等. 氮素和水分添加对短花针茅荒漠草原植物群落特征的影响[J]. 中国草地学报, 2013, 35(2): 69-75.[19]董世魁, 丁路明, 徐敏云, 等. 放牧强度对高寒地区多年生混播禾草叶片特征及草地初级生产力的影响[J]. 中国农业科学, 2004, 37(1): 136-142.[20]王文, 蒋文兰, 谢忠奎, 等. 黄土丘陵地区唐古特白刺根际土壤水分与根系分布研究[J]. 草业学报, 2013, 22(1): 20-28.[21]傅伯杰, 王军, 马克明. 黄土丘陵区土地利用对土壤水分的影响[J]. 中国科学基金, 1999, 4: 225-227.[22]胡良军, 邵明安. 黄土高原植被恢复的水分生态环境研究[J]. 应用生态学报, 2002, 13(8): 1045-1048.[23]武春华, 陈云明, 王国梁. 黄土丘陵区典型群落特征及其与环境因子的关系[J]. 水土保持学报, 2008, 22(3): 64-69.[24]臧岳铭, 朱志红, 李英年, 等. 高寒矮嵩草草甸物种多样性与功能多样性对初级生产力的影响[J]. 生态学杂志, 2009, 28(6): 999-1005.[25]Zhou Z C, Shangguan Z P. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China[J]. Plant and Soil, 2007, 291: 119-129.[26]王正文, 邢福, 祝廷成, 等. 松嫩平原羊草草地植物功能群组成及多样性特征对水淹干扰的响应[J]. 植物生态学报, 2002, 26(6): 708-716.[27]王俊, 刘文兆, 钟良平, 等. 长期连续种植苜蓿草地地上部分生物量与土壤水分的空间差异性[J]. 草业学报, 2009, 18(4): 41-46. |