[1] Li J, Shen Y X, Cai Y M. Improvement of fermentation quality of rice straw silage by application of a bacterial inoculant and glucose. Asian-Australian Journal of Animal Science, 2010, 23(7): 901-906. [2] Ma Y Y, Li Y F, Cheng Y F, et al . Effects of different chemical treatments on fermentation characteristics of rice straw in vitro . Acta Prataculturae Sinica, 2014, 23(3): 350-355. [3] Dong C F, Gu H R, Ding C L, et al . Effects of gibberellic acid application after anthesis on the feeding value of double-purpose rice ( Oryza sativa L.) straw at harvest. Field Crops Research, 2012, 131: 75-80. [4] Dong C F, Gu H R, Xu N X, et al . Effects of gibberellic acid on the nonstructural carbohydrates content in rice ( Oryza sativa L) straw harvested at different times. Acta Prataculturae Sinica, 2015, 24(8): 53-64. [5] Kende H, Zeevaart J A D. The five “classical” plant hormones. Plant Cell, 1997, 9: 1197-1210. [6] Brenner M L, Cheikh N. The Role of Hormones in Photosynthate Partitioning and Seed Filling[M]//Davies P J. Plant Hormones, Physiology, Biochemistry and Molecular Biology. The Netherlands: Kluwer Academic Publishers, 1995: 649-670. [7] Davies P J. Introduction[M]//Davies P J. Plant Hormones, Biosynthesis, Signal Transduction, Action. The Netherlands: Kluwer Academic Publishers, 2004: 1-35. [8] Wen F, Zhang Z, Bai T, et al . Proteomics reveals the effects of gibberellic acid (GA 3 ) on salt-stressed rice ( Oryza sativa L.) shoots. Plant Science, 2010, 178: 170-175. [9] Konishi H, Maeshima M, Komatsu S. Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin. Journal of Proteome Research, 2005, 4: 1775-1780. [10] Komatsu S, Konishi H. Proteome analysis of rice root proteins regulated by gibberellin. Genomics Proteomics Bioinformatics, 2005, 3: 132-142. [11] Shen S, Sharma A, Komatsu S. Characterization of proteins responsive to gibberellin in the leaf-sheath of rice ( Oryza sativa L.) seedling using proteome analysis. Biological Pharmaceutical Bulletin, 2003, 26: 129-136. [12] Komatsu S, Zang X, Tanaka N. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. Journal of Proteome Research, 2006, 5: 270-276. [13] Huang D, Wang S, Zhang B, et al . A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. The Plant Cell, 2015, 27: 1681-1696. [14] Yoshida S. Laboratory Manual for Physiological Studies of Rice[M]. Philippines: Los Baios, IRRI, 1976: 43. [15] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74: 3583-3597. [16] Goto I, Minson D J. Prediction of the dry matter digestibility of tropical grasses using a pepsin-cellulase essay. Animal Feed Science and Technology, 1977, 2(3): 247-253. [17] Barker S B, Summerson W H. The colorimetric determination of lactic acid in biological material. Journal of Biology Chemistry, 1941, 138: 535-554. [18] Weather M W. Phenol-hypochlorite reaction for determinations of ammonia. Annual of Chemistry, 1967, 39: 971-974. [19] Dong C F, Liu X B, Qu H, et al . Dynamical partition of photosynthates in tillers of rice ( Oryza sativa L.) during late growth period and its correlation with feeding value of rice straw at harvest. Field Crops Research, 2011, 123(3): 273-280. [20] Guo Y P, Ren Y X, Liu G H, et al . Effects of calcium (CaCl 2 ), GA 3 and complex liquid on the physiological characteristics of alfalfa seedlings under drought stress. Acta Prataculturae Sinica, 2015, 24(7): 89-96. [21] Chen X B, Liao A J, Luo Z M. Physiological properties of the roots and leaves of a high yield rice line at the late growth stage. Life Science Research, 1999, 3(3): 250-255. [22] Liu K. Regulation of Abscisic Acid and Ethylene to Grain Filling in Rice and Wheat and Its Physiological Mechanism[D]. Yangzhou: Yangzhou University, 2008. [23] Wang A G, Luo G H, Shao C B. Plant oxygen metabolism and cell damage induced by reactive oxygen species. Collected Papers of China Academy of Sciences, Southern China Institute of Botany, 1989, 5: 11-23. [24] Chen S Y. Injury of membrane lipid peroxidation to plant cell. Plant Physiology Communications, 1991, 27(2): 84-90. [25] Davies P J. Introduction[M]//Davies P J. Plant Hormones, Physiology, Biochemistry and Molecular Biology. The Netherlands: Kluwer Academic Publishers, 1995: 1-12. [2] 马艳艳, 李袁飞, 成艳芬, 等. 不同化学处理对稻草体外发酵动态变化的影响. 草业学报, 2014, 23(3): 350-355. [4] 董臣飞, 顾洪如, 许能祥, 等. 赤霉素对不同收获时间的稻草中非结构性碳水化合物含量的影响. 草业学报, 2015, 24(8): 53-64. [20] 郭郁频, 任永霞, 刘贵河, 等. 外源钙和赤霉素对干旱胁迫下苜蓿幼苗生理特性的影响. 草业学报, 2015, 24(7): 89-96. [21] 陈信波, 廖爱君, 罗泽民. 大穗型水稻生育后期叶片和根系生理的特性. 生命科学研究, 1999, 3(3): 250-255. [22] 刘凯. 脱落酸和乙烯对水稻与小麦籽粒灌浆的调控作用及其机理[D]. 扬州: 扬州大学, 2008. [23] 王爱国, 罗广华, 邵从本. 活性氧引起的植物氧代谢和细胞伤害. 中国科学院华南植物研究所集刊, 1989, 5: 11-23. [24] 陈少峪. 膜脂过氧化对植物细胞的伤害. 植物生理学通讯, 1991, 27(2): 84-90. |