Acta Prataculturae Sinica ›› 2018, Vol. 27 ›› Issue (8): 107-117.DOI: 10.11686/cyxb2017391
• Orignal Article • Previous Articles Next Articles
CAI Hua*, XU Hui-hui, SUN Na, SONG Ting-ting, REN Yong-jing, YANG Sheng-qiu
Received:
2017-09-19
Revised:
2017-11-22
Online:
2018-08-20
Published:
2018-08-20
CAI Hua, XU Hui-hui, SUN Na, SONG Ting-ting, REN Yong-jing, YANG Sheng-qiu. Physiological aspects of photosynthesis and organic acid accumulation in alkali-resistant transgenic alfalfa containing the GsPPCK1 and GsPPCK3 genes[J]. Acta Prataculturae Sinica, 2018, 27(8): 107-117.
[1] Wang Z, Li H, Ke Q, et al . Transgenic alfalfa plants expressing AtNDPK 2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiology and Biochemistry, 2014, 84: 67-77. [2] Wang Z, Su G, Li M, et al . Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Plant Physiology and Biochemistry, 2016, 109: 199-208. [3] Yang J Y, Zheng W, Tian Y, et al . Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49(2): 275-284. [4] Lin J, Wang Y, Sun S, et al . Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment, 2017, 576: 234-241. [5] Yang C W, Li C Y, Yin H J, et al . Physiological responses of Triticum aestivum - Agropyron intermedium to salt stress and alkaline stress. Journal of Crops, 2007, 33(8): 1255-1261. 杨春武, 李长有, 尹红娟, 等. 小冰麦对盐胁迫和碱胁迫的生理响应. 作物学报, 2007, 33(8): 1255-1261. [6] Yang C W, Xu H H, Wang L L, et al . Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47(1): 79-86. [7] Huang L H, Liang Z W, Ma H Y. Effects of soda saline alkali stress on photosynthesis, transpiration rate and water use efficiency of Leymus chinensis . Acta Prataculturae Sinica, 2009, 18(5): 25-30. 黄立华, 梁正伟, 马红媛. 苏打盐碱胁迫对羊草光合、蒸腾速率及水分利用效率的影响. 草业学报, 2009, 18(5): 25-30. [8] Guo R, Shi L X, Yan C, et al . Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize ( Zea mays L.) seedlings. BMC Plant Biology, 2017, 17(1): 41. [9] Yang C, Chong J, Kim C, et al . Osmotic adjustment and ion balance traits of an alkaline resistant halophyte Kochia sieversiana during adaptation to saline and alkaline conditions. Plant and Soil, 2007, 294: 263-276. [10] Zhou C, Zhu L, Xie Y, et al . Bacillus licheniformis SA03 confers increased saline-alkaline tolerance in Chrysanthemum plants by induction of abscisic acid accumulation. Frontiers in Plant Science, 2017, 8: 1143. [11] Guo R, Yang Z, Li F, et al . Comparative metabolic responses and adaptive strategies of wheat ( Triticm aestivum ) to salt and alkali stress. BMC Plant Biology, 2015, 15: 170. [12] Barker D H, Marszalek J, Zimpfer J F, et al . Changes in photosynthetic pigment composition and absorbed energy allocation during salt stress and CAM induction in Mesembryanthemum crystallinum . Functional Plant Biology, 2004, 31: 781-787. [13] Gawronska K, Romanowska E, Miszalski Z, et al . Limitation of C 3 -CAM shift in the common ice plant under high irradiance. Journal of Plant Physiology, 2013, 170(2): 129-135. [14] Monreal J A, Arias-Baldrich C, Pérez-Montaño F, et al . Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in sorghum leaves. Planta, 2013, 237(5): 1401-1413. [15] Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 2010, 61: 235-261. [16] Qi X, Xu W, Zhang J, et al . Physiological characteristics and metabolomics of transgenic wheat containing the maize C 4 phosphoenolpyruvate carboxylase ( PEPC ) gene under high temperature stress. Protoplasma, 2017, 254(2): 1017-1030. [17] Von Caemmerer S, Quick W P, Furbank R T. The development of C 4 rice: current progress and future challenges. American Association for the Advancement of Science, 2012, 336: 1671-1672. [18] Zhang H F, Xu W G, Wang H W, et al . Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvateorthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Protoplasma, 2014, 251(5): 1163-1173. [19] Qin N, Xu W, Hu L, et al . Drought tolerance and proteomics studies of transgenic wheat containing the maize C 4 phosphoenolpyruvate carboxylase ( PEPC ) gene. Protoplasma, 2016, 253(6): 1503-1512. [20] Zhang C, Li X, He Y, et al . Physiological investigation of C 4 -phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. Plant Physiology and Biochemistry, 2017, 115: 328-342. [21] Sullivan S, Jenkins G I, Nimmo H G. Roots, cycles and leaves. Expression of the phosphoenol pyruvate carboxylase kinase gene family in soybean. Plant Physiology, 2004, 135(4): 2078-2087. [22] Xu W, Sato S J, Clemente T E, et al . The PEP-carboxylase kinase gene family in Glycine max ( GmPpcK 1-4): an in-depth molecular analysis with nodulated, non-transgenic and transgenic plants. The Plant Journal, 2007, 49(5): 910-923. [23] Wang N, Zhong X, Cong Y, et al . Genome-wide analysis of phosphoenolpyruvate carboxylase gene family and their response to abiotic stresses in soybean. Scientific Reports, 2016, 6: 38448. [24] Izui K, Matsumura H, Furumoto T, et al . Phospshoe-nolpyruvate carboxylase: a new era of structural biology. Annual Reviews of Plant Biology, 2004, 55: 69-84. [25] Chen Z H, Jenkins G I, Nimmo H G. pH and carbon supply control the expression of phosphoenolpyruvate carboxylase kinase genes in Arabidopsis thaliana . Plant, Cell and Environment, 2008, 31(12): 1844-1850. [26] Doubnerová V, Ryslavá H. What can enzymes of C 4 photosynthesis do for C 3 plants under stress. Plant Science, 2011, 180:575-583. [27] O’Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochemical Journal, 2011, 436(1): 15-34. [28] Chen M, Tang Y, Zhang J, et al . RNA interference-based suppression of phosphoenolpyruvate carboxylase results in susceptibility of canola to osmotic stress. Journal of Integrative Plant Biology, 2010, 52(6): 585-592. [29] Liu X, Li X, Zhang C, et al . Phosphoenolpyruvate carboxylase regulation in C 4 -PEPC-expressing transgenic rice during early responses to drought stress. Physiologia Plantarum, 2017, 159(2): 178-200. [30] Wang J J, Zhang L L, Qian X, et al . GsPPCK 1 and GsPPCK 3 gene transformed alfalfa and its alkaline analysis. Journal of Tarim University, 2014, 26(2): 20-31. 王家佳, 张利莉, 钱雪, 等. GsPPCK 1和 GsPPCK 3基因转化苜蓿及其耐碱性分析. 塔里木大学学报, 2014, 26(2): 20-31. [31] Sarwat M, Das S, Srivastava P S. Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris , a medicinal herb. Plant Cell Reports, 2008, 27(3): 519-528. [32] Johnson H S, Hatch M D. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and ‘malic’enzyme in plants with the C 4 -dicarboxylic acid pathway of photosynthesis. Biochemical Journal, 1970, 119(2): 273-280. [33] Sadka A, Dahan E, Cohen L, et al . Aconitase activity and expression during the development of lemon fruit. Physiologia Plantarum, 2000, 108(3): 255-262. [34] Gerard V A, Driscoll T. A spectrophotometric assay for RuBisco activity: Application to the kelp Laminaria saccharina and implications for radiometric assays. Journal of Phycology, 1996, 32: 880-884. [35] Sayre R T, Kennedy R A, Pringnitz D J. Photosynthetic enzyme activities and localization in Mollugo verticillata population differing on the leaves of C 3 and C 4 cycle operations. Plant Physiology, 1979, 64: 293-299. [36] Luo Z X, Zhang S Z, Yang B P. The key gene in C 4 -photosynthetic pathway transfer into C 3 plant. Plant Physiology Communications, 2008, 4(2): 187-193. 罗遵喜, 张树珍, 杨本鹏. C 4 光合关键酶基因转化C 3 植物. 植物生理学通讯, 2008, 4(2): 187-193. [37] Suzuki S, Murai N, Burnell J N, et al . Changes in photosynthetic carbon flow in transgenic rice plants that express C 4 -type phosphoenolpyruvate carboxlkinase from Urochloa panicoides . Plant Physiology, 2000, 124(1): 163-172. [38] Guo R, Yang Z Z, Li F, et al . Comparative metabolic responses and adaptive strategies of wheat ( Triticum aestivum ) to salt and alkali stress. BMC Plant Biology, 2015, (15): 170-183. [39] Yang G H. Study on organic acids accumulation and secretion of alkali stress induced in wheat-wheatgrass. Journal of Northwest A&F University (Natural Science Edition), 2010, 38(7): 77-84. 杨国会. 碱胁迫诱导小冰麦有机酸积累和分泌的研究. 西北农林科技大学学报(自然科学版), 2010, 38(7): 77-84. [40] Guo L Q, Chen J X, Cui J J, et al . Comparative studies of metabolic regulation of organic acids in Puccinellia tenuiflora under salt and alkali stresses. Journal of Northeast Normal University (Natural Science Edition), 2009, 41(4): 123-128. 郭立泉, 陈建欣, 崔景军, 等. 盐、碱胁迫下星星草有机酸代谢调节的比较研究. 东北师范大学学报(自然科学版), 2009, 41(4): 123-128. [41] Yang C W, Li C Y, Zhang M L, et al . pH and ion balance in wheat-wheatgrass under salt or alkali stress. Chinese Journal of Applied Ecology, 2008, 19(5): 1000-1005. 杨春武, 李长有, 张美丽, 等. 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 2008, 19(5): 1000-1005. |
[1] | XIE De-jin, LI Jing-wen, YE You-jie, YIN Biao, REN Ke, CHEN Ling-yan, RONG Jun-dong, ZHENG Yu-shan. Effects of light quality on growth, and physiological and biochemical traits of Sarcandra glaba seedlings [J]. Acta Prataculturae Sinica, 2020, 29(8): 104-115. |
[2] | ZHAO Ying, WEI Xiao-hong, LI Tao-tao. Effects of exogenous nitric oxide on seed germination and seedling growth of Chenopodium quinoa under complex saline-alkali stress [J]. Acta Prataculturae Sinica, 2020, 29(4): 92-101. |
[3] | SHEN Wu-yan, FENG Zheng-jun, QIN Wen-fang, FAN Yuan. Effects of saline-alkali stress on the growth and ion micro-distribution of ryegrass plants [J]. Acta Prataculturae Sinica, 2020, 29(2): 52-63. |
[4] | DONG Wen-ke, Chen Chun-yan, MA Hui-ling. Analysis of insect resistance and herbicide resistance in transgenic alfalfa plants over-expressing the OvBAN/bar gene [J]. Acta Prataculturae Sinica, 2019, 28(7): 159-167. |
[5] | ZHAO Ying, WEI Xiao-hong, HE Ya-long, ZHAO Xiao-fei, HAN Ting, YUE Kai, XIN Xia-qing, SU Mei-fei, MA Wen-jing, LUO Qiao-juan. Effects of complex saline-alkali stress on seed germination and seedling antioxidant characteristics of Chenopodium quinoa [J]. Acta Prataculturae Sinica, 2019, 28(2): 156-167. |
[6] | XUE Bo-han, LI Na, SONG Gui-long, LI Shi-gang, PUYANG Xue-hua, LI Jin-bo. Effects of exogenous citric, malic and oxalic acids on the tolerance and enrichment efficiency of Elymus dahuricus under cadmium-stress [J]. Acta Prataculturae Sinica, 2018, 27(6): 128-136. |
[7] | LIU Jian-xin, OU Xiao-bin, WANG Jin-cheng, LIU Xiu-li. Exogenous H2O2 improves alkali resistance of oat seedlings by regulating active oxygen metabolism and osmolyte accumulation [J]. Acta Prataculturae Sinica, 2018, 27(2): 97-104. |
[8] | LI Hai?yun, YAO Tuo, ZHANG Rong, ZHANG Jie, LI Zhi?yan, RONG Liang?yan, LU Xiao?wen, YANG Xiao?lei, XIA Dong?hui, LUO Hui?qin. Relationship between organic acids secreted from rhizosphere phosphate?solubilizing bacteria in Trifolium pratense and phosphate?solubilizing ability [J]. Acta Prataculturae Sinica, 2018, 27(12): 113-121. |
[9] | CHEN Ran-Ran, ZHU Ping-Hui, JIA Bo-Wei, SONG Xue-Wei, WANG Zi-Jun, LI Ji-Na, LI Qiang, DING Xiao-Dong, ZHU Yan-Ming. Isolation of GsARHP from Glycine soja and its functional analysis in transgenic alfalfa under alkaline stress [J]. Acta Prataculturae Sinica, 2017, 26(9): 92-103. |
[10] | LI Xiao-Dong, WANG Xiao-Li, CHEN Xi, CAI Lu, ZENG Qing-Fei, SHU Jian-Hong, CAI Yi-Ming. Transcriptome profiling analysis of the phosphate-solubilizing mechanism of the white clover rhizosphere strain RW8 [J]. Acta Prataculturae Sinica, 2017, 26(8): 168-179. |
[11] | MA Ying, WANG Xiao-Ping, JIANG Hai-Bo, SHI De-Cheng. Characteristics of organic acids accumulation and oxalate metabolism in Kochia sieversiana under salt and alkali stresses [J]. Acta Prataculturae Sinica, 2017, 26(7): 158-165. |
[12] | CAI Lu, WANG Xiao-Li, CHEN Yin, WANG Zi-Yuan, LI Xiao-Dong. Isolation and identification of an inorganic phosphorus-solubilizing bacterium RW8 and its growth-promoting effect on white clover (Trifolium repens) [J]. Acta Prataculturae Sinica, 2017, 26(5): 181-188. |
[13] | ZHANG Qiang, LIU Ning-Fang, XIANG Zuo-Xiang, YANG Zhi-Jian, JIANG Yuan-Li, HU Long-Xing. Effects of neutral and alkaline salt stresses on the growth and physiological metabolism of Kentucky bluegrass [J]. Acta Prataculturae Sinica, 2017, 26(12): 67-76. |
[14] | LI Li, ZHANG Yi-Gong, JIANATI, LI Xue-Sen. Seed germination and physiological responses of Vicia costata under saline-alkali stress conditions [J]. Acta Prataculturae Sinica, 2016, 25(9): 46-53. |
[15] | WANG Qian, XIAO Liang, TANG Xiang-Yu, XU Qing, YI Hua-Peng, TIAN Hai-Feng. Effects of saline alkali stress and nitrogen supply on germination and seedling growth of Suaeda salsa [J]. Acta Prataculturae Sinica, 2015, 24(9): 216-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||