[1] Hattori T, Morita S.Energy crops for sustainable bioethanol production; which, where and how? Plant Production Science, 2015, 13(3): 221-234. [2] Zhang F C, Li P, Qu L Y.Biodiversity conservation and cultivation of biofuel plants in China. Progressus Inquisitiones de Mutatione Climatis, 2012, 8(3): 220-227. 张风春, 李培, 曲来叶. 中国生物质能源植物种植现状及生物多样性保护. 气候变化研究进展, 2012, 8(3): 220-227. [3] Cheng X, Zhu W B, Xie G H.Agro-bioenergy and energy crops. Journal of Natural Resources, 2009, 24(5): 842-848. 程序, 朱万斌, 谢光辉. 论农业生物能源和能源作物. 自然资源学报, 2009, 24(5): 842-848. [4] Yang S Q, Wang D L, Yang Z L.Overseas research progress on energy crops and some focus issues. Journal of Agricultural Science and Technology, 2009, 11(1): 13-18. 杨世琦, 王道龙, 杨正礼. 国外能源作物研究进展与焦点问题. 中国农业科技导报, 2009, 11(1): 13-18. [5] Tan F R, Wu B, Dai L C, et al. Research and prospect of cellulosic herbaceous energy plant. Chinese Journal of Applied and Environmental Biology, 2014, 20(1): 162-168. 谭芙蓉, 吴波, 代立春, 等. 纤维类草本能源植物的研究现状. 应用与环境生物学报, 2014, 20(1): 162-168. [6] Wang X J, Zhang S Z, Lin S S, et al. Advances in study on bio-energy utilization of stem cell wall components in alfalfa (Medicago sativa L.). Scientia Agricultura Sinica, 2013, 46(8): 1694-1705. 王晓娟, 张树振, 林双双, 等. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展. 中国农业科学, 2013, 46(8): 1694-1705. [7] Li G Y, Li J L, Wang Y, et al. Study on the selection and evaluation on fine energy plants. Renewable Energy Resources, 2007, 25(6): 84-89. 李高扬, 李建龙, 王艳, 等. 优良能源植物筛选及评价指标探讨. 可再生能源, 2007, 25(6): 84-89. [8] Chen Y Q, Guo X D, Liu J J, et al. Assessment of marginal land potential for energy plants in China. Land Development and Engineering Research, 2017, 2(7): 1-7. 陈瑜琦, 郭旭东, 刘俊杰, 等. 我国可用于能源作物种植的边际土地数量及空间分布研究. 土地开发工程研究, 2017, 2(7): 1-7. [9] Yu H B, Zhou S B, Song J, et al. Diversity of settled plants during energy crops phytostabilization on copper mine tailing reservoir. Chinese Agricultural Science Bulletin, 2010, 26(18): 341-346. 余海波, 周守标, 宋静, 等. 铜尾矿库能源植物稳定化修复过程中定居植物多样性研究. 中国农学通报, 2010, 26(18): 341-346. [10] Desjardins D, Pitre F E, Nissim W G, et al. Differential uptake of silver, copper and zinc suggests complementary species-specific phytoextraction potential. International Journal of Phytoremediation, 2016, 18(6): 598-604. [11] Peralta-Videa J R, Gardea-Torresdey J L, Gomez E, et al. Potential of alfalfa plant to phytoremediate individually contaminated montmorillonite-soils with cadmium(II), chromium(VI), copper (II), nickel(II), and zinc(II). Bulletin of Environmental Contamination and Toxicology, 2002, 69(1): 74-81. [12] Sheoran V, Sheoran A S, Poonia P.Factors affecting phytoextraction: A review. Pedosphere, 2016, 26(2): 148-166. [13] Yang H B, Li J Q, Wang J J, et al. Effects of fertilizer and Rhizobium inoculation on alfalfa growth on mine tailings and the physicochemical propertied of iron tailings. Acta Prataculturae Sinica, 2016, 25(2): 68-76. 杨何宝, 李继泉, 王俊娟, 等. 施肥和苜蓿接种根瘤菌对苜蓿生长及铁尾矿砂基质理化性质的影响. 草业学报, 2016, 25(2): 68-76. [14] Poor P, Ordog A, Wodala B, et al. Effect of EDTA-assisted copper uptake on photosynthetic activity and biomass production of sweet sorghum. Cereal Research Communications, 2015, 43(4): 604-615. [15] Babu A G, Shim J, Shea P J, et al. Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudangrass. Ecological Engineering, 2014, 69: 186-191. [16] Verdugo C, Sanchez P, Santibanez C, et al. Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfidic copper tailings in Chile: A greenhouse experiment. International Journal of Phytoremediation, 2011, 13(2): 107-125. [17] Yang J, Kloepper J W, Ryu C M.Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 2009, 14(1): 1-4. [18] Teng Y, Wang X M, Li L N, et al. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Frontiers in Plant Science, 2015, 6: 1-10. [19] Ma Y, Prasad M N V, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 2011, 29(2): 248-258. [20] Ali A, Guo D, Mahar A, et al. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils. Ecotoxicology and Environmental Safety, 2017, 139: 202-209. [21] Li Y M, Zhong Y Z, Tan Y, et al. Diversity of rhizobia nodulating Astragalus sinicus, Medicago sativa and Trifolium repens in nodulated soybean rhizosphere soil in Sichuan. Chinese Journal of Applied and Environmental Biology, 2015, 21(2): 234-241. 李艳梅, 钟宇舟, 谭渊, 等. 四川地区结瘤大豆根际土壤中紫云英、苜蓿和三叶草根瘤菌的多样性分析. 应用与环境生物学报, 2015, 21(2): 234-241. [22] Dong X Z, Cai M Y.Handbook of common bacterial system identification. Beijing: Science Press, 2001. 东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001. [23] Gordon S A,Weber R P.Colorimetric estimation of indoleacetic acid. Plant Physiology, 1951, 26(1): 192-195. [24] Sheng X F, He L Y, Wang Q Y, et al. Effects of inoculation of biosurfactant-producing Bacillus sp J119 on plant growth and cadmium uptake in a cadmium-amended soil. Journal of Hazardous Materials, 2008, 155: 17-22. [25] Schwyn B, Neilands J B.Universal chemical assay for the detection and determination of siderophores. Analytic Biochemistry, 1987, 160: 47-56. [26] Penrose D M, Glick B R.Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 2003, 118(1): 10-15. [27] Schatz A, Bovell C J R. Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. Journal of Bacteriology, 1952, 63: 87-98. [28] Maiz I, Esnaola M V, Millan E.Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Science of the Total Environment, 1997, 206: 107-115. [29] Bao S D.Soil and agricultural chemistry analysis (3rd edition). Beijing: China Agricultural Science and Technology Press, 2000. 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. [30] Wang X K.Principles and techniques of plant physiological biochemical experiment (2nd edition). Beijing: Higher Education Press, 2006. 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. [31] Fan L M, Ma Z Q, Liang J Q, et al. Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresource Technology, 2011, 102(2): 703-709. [32] Lu M, Jiao S, Gao E, et al. Transcriptome response to heavy metals in Sinorhizobium meliloti CCNWSX0020 reveals new metal resistance determinants that also promote bioremediation by Medicago lupulina in metal-contaminated soil. Applied and Environmental Microbiology, 2017, 83: e01244-17. [33] Chen W X, Wang E T, Chen W F.The relationship between the symbiotic promiscuity of rhizobia and legumes and their grographical environments. Scientia Agricultura Sinica, 2004, 37(1): 81-86. 陈文新, 汪恩涛, 陈文峰. 根瘤菌-豆科植物共生多样性与地理环境的关系. 中国农业科学, 2004, 37(1): 81-86. [34] Chen W F.Progress and perspective of systematics of rhizobia. Microbiology China, 2016, 43(5): 1095-1100. 陈文峰. 根瘤菌系统学研究进展与展望. 微生物学通报, 2016, 43(5): 1095-1100. [35] Feng P, Sun L, Shen X H, et al. Response and enrichment ability of perennial ryegrass under lead and cadmium stresses. Acta Prataculturae Sinica, 2016, 25(1): 153-162. 冯鹏, 孙力, 申晓慧, 等. 多年生黑麦草对Pb、Cd胁迫的响应及富集能力研究. 草业学报, 2016, 25(1): 153-162. [36] De Gregori I, Fuentes E, Olivares D, et al. Extractable copper, arsenic and antimony by EDTA solution from agricultural Chilean soils and its transfer to alfalfa plants (Medicago sativa L.). Journal of Environmental Monitoring, 2004, 6(1): 38-47. [37] Jia W T, Miao F F, Lü S L, et al. Identification for the capability of Cd-tolerance, accumulation and translocation of 96 sorghum genotypes. Ecotoxicology and Environmental Safety, 2017, 145: 391-397. [38] Hao X L, Xie P, Zhu Y G, et al. Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. Environmental Science and Technology, 2015, 49(4): 2328-2340. [39] Hao X, Taghavi S, Xie P, et al. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. International Journal of Phytoremediation, 2014, 16(2): 179-202. [40] Wei G H, Ma Z Q.Application of rhizobia-legume symbiosis for remediation of heavy-metal contaminated soils. Acta Microbiologica Sinica, 2010, 50(11): 1421-1430. 韦革宏, 马占强. 根瘤菌-豆科植物共生体系在重金属污染环境修复中的地位、应用及潜力. 微生物学报, 2010, 50(11): 1421-1430. [41] Wu J, Tu S X.Research progress on response of plant root exudates to pollution. Journal of Nuclear Agricultural Sciences, 2010, 24(6): 1320-1327. 吴佳, 涂书新. 植物根系分泌物对污染胁迫响应的研究进展. 核农学报, 2010, 24(6): 1320-1327. [42] Chen S T, He L Y, Li Y, et al. Effect of Rhizobium sp. W33 on copper accumulation and organic exudations of different plants grown on copper-contaminated soil. Acta Scientiae Circumstantiae, 2014, 34(8): 2077-2084. 陈生涛, 何琳燕, 李娅, 等. Rhizobium sp. W33对不同植物吸收铜和根际分泌物的影响. 环境科学学报, 2014, 34(8): 2077-2084. [43] Wang Y B, Jiang T H, An L, et al. Effects of growth of Cynodon dactylon from two sources on enzyme activities of soil polluted by copper. Acta Prataculturae Sinica, 2008, 17(6): 40-46. 王友保, 蒋田华, 安雷, 等. 两种来源狗牙根的生长对铜污染土壤酶活性的影响. 草业学报, 2008, 17(6): 40-46. |