[1] Zhen C D, Yu M, Xiao H D, et al. Influences of silicon on content of soluble sugars, amino acids in turf-grasses under shading stress. Journal of Huazhong Agricultural University, 2010, 29(3): 317-320. 甄畅迪, 喻敏, 萧洪东, 等. 硅对遮阴处理草坪草可溶性糖和氨基酸含量的影响. 华中农业大学学报, 2010, 29(3): 317-320. [2] Song X L, Yang H Y, Zeng L Q, et al. Study on the shading impact on plant. Northern Horticulture, 2009, 5: 129-133. 宋晓蕾, 杨红玉, 曾黎琼, 等. 植物遮阴效应的研究进展. 北方园艺学报, 2009, 5: 129-133. [3] Fan Y, Chen J, Wang Z L, et al. Soybean (Glycine max L. Merr.) seedlings response to shading: Leaf structure, photosynthesis and proteomic analysis. BMC Plant Biology, 2019, 19(1): 34. [4] Wang S S, Cai J, Liu J P, et al. Effect of soil substrate and shade on the seedling components and biomass allocation of Zoysia japon in the winter. Acta Agrestia Sinica, 2016, 24(6): 1296-1303. 王思思, 蔡捡, 刘金平, 等. 基质和遮阴对结缕草冷季生长幼苗构件及生物量分配的影响. 草地学报, 2016, 24(6): 1296-1303. [5] Khan A L, Waqas M, Asaf S, et al. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, 2017, 133: 58-69. [6] Rizvi A, Khan M S. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere, 2017, 185: 942-952. [7] Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities. Frontiers in Plant Science, 2018, 8: 22-23. [8] Bharti N, Barnawal D, Maji D, et al. Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress. Microbial Ecology, 2015, 70: 196-208. [9] Hu J C, Xue D L, Ma C X, et al. Research advances in plant growth-promoting rhizobacteria and its application prospects. Chinese Journal of Applied Ecology, 2004, 10: 1963-1966. 胡江春, 薛德林, 马成新, 等. 植物根际促生菌(PGPR)的研究与应用前景. 应用生态学报, 2004, 10: 1963-1966. [10] Zhou C, Ma Z Y, Zhu L, et al. Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. International Journal of Molecular Sciences, 2016, 17: 976. [11] Li L, Li L, Wang X Y, et al. Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiology and Biochemistry, 2017, 119: 211-223. [12] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. [13] Li H S. Principles and techniques of plant physiological and biochemical experiments (The second edition). Beijing: Higher Education Press, 2006. 李合生. 现代植物生理学(第2版). 北京: 高等教育出版社, 2006. [14] Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxylammo-iumchloride: A simple assay for superoxide dismutase. Analytical Biochemistry, 1976, 70(2): 616-620. [15] Beauchamp C, Fridovich I. Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971, 44(1): 276-287. [16] Hammerschmidt R, Nuckles E M, Kuc J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrchum lagenarium. Physiological and Molecular Plant Pathology, 1982, 20(1): 73-82. [17] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 1992, 98(4): 1222-1227. [18] Foyer C H, Halliwei I B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 1976, 133: 21-25. [19] Zhang Y, Xia G H, Ma K, et al. Effects of shade on photosynthetic characteristics and chlorophyll fluorescence of Ardisia violacea. Chinese Journal of Applied Ecology, 2014, 25(7): 1940-1948. 张云, 夏国华, 马凯, 等. 遮阴对堇叶紫金牛光合特性和叶绿素荧光参数的影响. 应用生态学报, 2014, 25(7): 1940-1948. [20] Pires M V, Almeida A A F, Figueiredo A L, et al. Photosynthetic characteristics of ornamental passion flowers grown under different light intensities. Photosynthetica, 2011, 49: 593-602. [21] Lü B S, Yan Z W, Tian H W, et al. Local auxin biosynthesis mediates plant growth and development. Trends in Plant Science, 2019, 24(1): 6-9. [22] Yang Y, Yang X H, Sun Y. Effect on turf characteristics of the Kentucky bluegrass turf under different shading intensities. Acta Agrestia Sinica, 2010, 18(3): 447-451. 杨燕, 杨晓华, 孙彦. 不同遮荫强度对草地早熟禾草坪质量的影响. 草地学报, 2010, 18(3): 447-451. [23] Xie Y R, Liu Y, Wang H, et al. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nature Communications, 2017, 8: 348. [24] Hussain S, Iqbal N, Brestic M, et al. Changes in morphology, chlorophyll fluorescence performance and rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Science of the Total Environment, 2019, 658: 626-637. [25] Etesami H,Maheshwari D K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 156: 225-246. [26] Zhang X H, Liu Y H, Liu Q, et al. Nitric oxide is involved in abscisic acid-induced photosynthesis and antioxidant system of tall fescue seedlings response to low-light stress. Environmental and Experimental Botany, 2018, 155: 226-238. [27] Kumar M, Mishra S, Dixit V, et al. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signaling & Behavior, 2016, 11(1): e1071004. [28] Park Y G, Mun B G, Kang S, et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One, 2017, 12(3): e0173203. [29] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9): 405-410. |