Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (12): 117-128.DOI: 10.11686/cyxb2021241
He-shan ZHANG1(), Qiu GAO2, Ting-ting ZHANG1, Jiao-yun LU1, Hong TIAN1, Jun-bo XIONG1, Yang LIU1()
Received:
2021-06-17
Revised:
2021-07-19
Online:
2021-11-11
Published:
2021-11-11
Contact:
Yang LIU
He-shan ZHANG, Qiu GAO, Ting-ting ZHANG, Jiao-yun LU, Hong TIAN, Jun-bo XIONG, Yang LIU. Comprehensive evaluation of copper tolerance of 30 germplasm resources of red clover (Trifolium pratense)[J]. Acta Prataculturae Sinica, 2021, 30(12): 117-128.
序号Code | 材料编号Germplasm code | 来源Origin | 序号Code | 材料编号Germplasm code | 来源Origin |
---|---|---|---|---|---|
1 | CF022168 | 利比亚Libya | 16 | CF022161 | 美国America |
2 | CF022167 | 阿根廷Argentina | 17 | CF022175 | 波兰Poland |
3 | CF022212 | 加拿大Canada | 18 | CF022179 | 美国America |
4 | CF022232 | 日本Japan | 19 | EM00081 | 中国China |
5 | CF002082 | 日本Japan | 20 | CF022325 | 英国Britain |
6 | CF022172 | 匈牙利Hungary | 21 | CF022231 | 英国Britain |
7 | CF022151 | 美国America | 22 | CF022199 | 葡萄牙Portugal |
8 | CF022169 | 阿根廷Argentina | 23 | CF022230 | 中国China |
9 | CF022173 | 匈牙利Hungary | 24 | CF022156 | 日本Japan |
10 | CF022165 | 德国Germany | 25 | CF022181 | 意大利Italy |
11 | CF022150 | 澳大利亚Australia | 26 | CF022234 | 澳大利亚Australia |
12 | CF022235 | 俄罗斯Russia | 27 | CF022211 | 丹麦Denmark |
13 | CF022171 | 匈牙利Hungary | 28 | CF022233 | 澳大利亚Australia |
14 | CF022202 | 罗马尼亚Romania | 29 | CF022178 | 美国America |
15 | CF000802 | 英国Britain | 30 | CF022188 | 匈牙利Hungary |
Table 1 Information of red clover germplasm resources
序号Code | 材料编号Germplasm code | 来源Origin | 序号Code | 材料编号Germplasm code | 来源Origin |
---|---|---|---|---|---|
1 | CF022168 | 利比亚Libya | 16 | CF022161 | 美国America |
2 | CF022167 | 阿根廷Argentina | 17 | CF022175 | 波兰Poland |
3 | CF022212 | 加拿大Canada | 18 | CF022179 | 美国America |
4 | CF022232 | 日本Japan | 19 | EM00081 | 中国China |
5 | CF002082 | 日本Japan | 20 | CF022325 | 英国Britain |
6 | CF022172 | 匈牙利Hungary | 21 | CF022231 | 英国Britain |
7 | CF022151 | 美国America | 22 | CF022199 | 葡萄牙Portugal |
8 | CF022169 | 阿根廷Argentina | 23 | CF022230 | 中国China |
9 | CF022173 | 匈牙利Hungary | 24 | CF022156 | 日本Japan |
10 | CF022165 | 德国Germany | 25 | CF022181 | 意大利Italy |
11 | CF022150 | 澳大利亚Australia | 26 | CF022234 | 澳大利亚Australia |
12 | CF022235 | 俄罗斯Russia | 27 | CF022211 | 丹麦Denmark |
13 | CF022171 | 匈牙利Hungary | 28 | CF022233 | 澳大利亚Australia |
14 | CF022202 | 罗马尼亚Romania | 29 | CF022178 | 美国America |
15 | CF000802 | 英国Britain | 30 | CF022188 | 匈牙利Hungary |
性状 Traits | 胁迫浓度 Stress concentration (mmol·L-1) | 均值 Mean | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 差异性 Difference |
---|---|---|---|---|---|---|---|
发芽率GR | 0.5 | 1.00 | 1.14 | 0.88 | 6.263 | 6.28 | 5.14*** |
2.0 | 0.99 | 1.13 | 0.88 | 5.417 | 5.45 | 3.28*** | |
4.0 | 0.94 | 1.11 | 0.82 | 7.565 | 8.01 | 3.50*** | |
8.0 | 0.78 | 0.93 | 0.61 | 8.450 | 10.89 | 2.13** | |
胚根长度RL | 0.5 | 0.54 | 0.69 | 0.40 | 0.070 | 12.74 | 2.09** |
2.0 | 0.19 | 0.33 | 0.10 | 0.060 | 30.78 | 15.13*** | |
4.0 | 0.13 | 0.47 | 0.06 | 0.090 | 70.14 | 6.09*** | |
8.0 | - | - | - | - | - | - | |
胚根直径RD | 0.5 | 1.10 | 1.42 | 0.85 | 0.150 | 13.73 | 2.34* |
2.0 | 1.56 | 2.08 | 1.12 | 0.190 | 12.33 | 2.14 | |
4.0 | 1.46 | 1.84 | 1.03 | 0.180 | 12.29 | 2.06 | |
8.0 | - | - | - | - | - | - |
Table 2 Germination rate and root characteristics of red clover in the germination stage
性状 Traits | 胁迫浓度 Stress concentration (mmol·L-1) | 均值 Mean | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 差异性 Difference |
---|---|---|---|---|---|---|---|
发芽率GR | 0.5 | 1.00 | 1.14 | 0.88 | 6.263 | 6.28 | 5.14*** |
2.0 | 0.99 | 1.13 | 0.88 | 5.417 | 5.45 | 3.28*** | |
4.0 | 0.94 | 1.11 | 0.82 | 7.565 | 8.01 | 3.50*** | |
8.0 | 0.78 | 0.93 | 0.61 | 8.450 | 10.89 | 2.13** | |
胚根长度RL | 0.5 | 0.54 | 0.69 | 0.40 | 0.070 | 12.74 | 2.09** |
2.0 | 0.19 | 0.33 | 0.10 | 0.060 | 30.78 | 15.13*** | |
4.0 | 0.13 | 0.47 | 0.06 | 0.090 | 70.14 | 6.09*** | |
8.0 | - | - | - | - | - | - | |
胚根直径RD | 0.5 | 1.10 | 1.42 | 0.85 | 0.150 | 13.73 | 2.34* |
2.0 | 1.56 | 2.08 | 1.12 | 0.190 | 12.33 | 2.14 | |
4.0 | 1.46 | 1.84 | 1.03 | 0.180 | 12.29 | 2.06 | |
8.0 | - | - | - | - | - | - |
性状 Traits | 胁迫浓度 Stress concentration (mmol·L-1) | 均值 Mean | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 差异性 Difference |
---|---|---|---|---|---|---|---|
存活率SR | 5 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | - |
20 | 0.87 | 1.00 | 0.72 | 7.43 | 8.50 | 0.68* | |
50 | 0.03 | 0.17 | 0.00 | 5.21 | 175.71 | 0.26 | |
地上生物量AB | 5 | 0.69 | 0.99 | 0.39 | 0.20 | 28.74 | 1.72 |
20 | 0.61 | 0.87 | 0.30 | 0.14 | 23.20 | 1.47* | |
50 | 0.31 | 0.87 | 0.03 | 0.16 | 52.37 | 1.94* | |
地下生物量UB | 5 | 0.57 | 1.13 | 0.21 | 0.25 | 43.16 | 1.18 |
20 | 0.54 | 0.86 | 0.16 | 0.18 | 32.59 | 1.46* | |
50 | 0.10 | 0.48 | 0.02 | 0.11 | 104.65 | 3.14*** | |
根冠比RSR | 5 | 0.83 | 1.30 | 0.32 | 0.24 | 28.82 | 1.52 |
20 | 0.96 | 1.88 | 0.49 | 0.32 | 33.72 | 1.18* | |
50 | 0.61 | 2.47 | 0.08 | 0.66 | 109.40 | 2.61** | |
根总长度TRL | 5 | 0.76 | 0.95 | 0.41 | 0.14 | 18.00 | 0.10 |
20 | 0.62 | 0.94 | 0.36 | 0.14 | 22.92 | 2.30** | |
50 | 0.19 | 0.49 | 0.03 | 0.09 | 49.42 | 2.68** | |
根尖数NRT | 5 | 0.60 | 0.84 | 0.21 | 0.18 | 29.67 | 2.60** |
20 | 0.49 | 0.86 | 0.21 | 0.16 | 32.98 | 1.63* | |
50 | 0.11 | 0.46 | 0.02 | 0.10 | 89.17 | 1.87* | |
根体积RV | 5 | 0.68 | 0.83 | 0.45 | 0.10 | 14.81 | 1.28 |
20 | 0.49 | 0.75 | 0.21 | 0.13 | 27.07 | 1.93* | |
50 | 0.28 | 0.55 | 0.10 | 0.11 | 40.07 | 2.65** |
Table 3 The difference between characteristics of red clover in the seedling stage
性状 Traits | 胁迫浓度 Stress concentration (mmol·L-1) | 均值 Mean | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 差异性 Difference |
---|---|---|---|---|---|---|---|
存活率SR | 5 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | - |
20 | 0.87 | 1.00 | 0.72 | 7.43 | 8.50 | 0.68* | |
50 | 0.03 | 0.17 | 0.00 | 5.21 | 175.71 | 0.26 | |
地上生物量AB | 5 | 0.69 | 0.99 | 0.39 | 0.20 | 28.74 | 1.72 |
20 | 0.61 | 0.87 | 0.30 | 0.14 | 23.20 | 1.47* | |
50 | 0.31 | 0.87 | 0.03 | 0.16 | 52.37 | 1.94* | |
地下生物量UB | 5 | 0.57 | 1.13 | 0.21 | 0.25 | 43.16 | 1.18 |
20 | 0.54 | 0.86 | 0.16 | 0.18 | 32.59 | 1.46* | |
50 | 0.10 | 0.48 | 0.02 | 0.11 | 104.65 | 3.14*** | |
根冠比RSR | 5 | 0.83 | 1.30 | 0.32 | 0.24 | 28.82 | 1.52 |
20 | 0.96 | 1.88 | 0.49 | 0.32 | 33.72 | 1.18* | |
50 | 0.61 | 2.47 | 0.08 | 0.66 | 109.40 | 2.61** | |
根总长度TRL | 5 | 0.76 | 0.95 | 0.41 | 0.14 | 18.00 | 0.10 |
20 | 0.62 | 0.94 | 0.36 | 0.14 | 22.92 | 2.30** | |
50 | 0.19 | 0.49 | 0.03 | 0.09 | 49.42 | 2.68** | |
根尖数NRT | 5 | 0.60 | 0.84 | 0.21 | 0.18 | 29.67 | 2.60** |
20 | 0.49 | 0.86 | 0.21 | 0.16 | 32.98 | 1.63* | |
50 | 0.11 | 0.46 | 0.02 | 0.10 | 89.17 | 1.87* | |
根体积RV | 5 | 0.68 | 0.83 | 0.45 | 0.10 | 14.81 | 1.28 |
20 | 0.49 | 0.75 | 0.21 | 0.13 | 27.07 | 1.93* | |
50 | 0.28 | 0.55 | 0.10 | 0.11 | 40.07 | 2.65** |
性状 Traits | 浓度间 Concentrations (C) | 种质间 Accessions (A) | 互作 C×A |
---|---|---|---|
发芽率GR | 227.93*** | 6.72*** | 2.35*** |
胚根长度RL | 1149.30*** | 5.04*** | 3.86*** |
胚根直径RD | 123.64*** | 5.25*** | 0.61 |
存活率SR | 5405.46*** | 1.61* | 1.86** |
地上生物量AB | 156.53*** | 4.26*** | 3.32*** |
地下生物量UB | 145.09*** | 2.62*** | 2.37*** |
根冠比RSR | 7.47** | 1.91** | 1.39 |
根总长度TRL | 481.87*** | 4.54*** | 1.99*** |
根尖数NRT | 268.65*** | 6.56*** | 1.40* |
根体积RV | 253.31*** | 3.78*** | 2.43*** |
Table 4 Analysis of variance of 10 copper resistance indexes
性状 Traits | 浓度间 Concentrations (C) | 种质间 Accessions (A) | 互作 C×A |
---|---|---|---|
发芽率GR | 227.93*** | 6.72*** | 2.35*** |
胚根长度RL | 1149.30*** | 5.04*** | 3.86*** |
胚根直径RD | 123.64*** | 5.25*** | 0.61 |
存活率SR | 5405.46*** | 1.61* | 1.86** |
地上生物量AB | 156.53*** | 4.26*** | 3.32*** |
地下生物量UB | 145.09*** | 2.62*** | 2.37*** |
根冠比RSR | 7.47** | 1.91** | 1.39 |
根总长度TRL | 481.87*** | 4.54*** | 1.99*** |
根尖数NRT | 268.65*** | 6.56*** | 1.40* |
根体积RV | 253.31*** | 3.78*** | 2.43*** |
性状 Traits | 发芽率 GR | 胚根长度 RL | 胚根直径RD | 存活率 SR | 地上生物量 AB | 地下生物量 UB | 根冠比RSR | 根总长度TRL | 根尖数NRT |
---|---|---|---|---|---|---|---|---|---|
胚根长度RL | -0.032 | ||||||||
胚根直径RD | -0.063 | -0.508** | |||||||
存活率SR | -0.190 | 0.134 | 0.075 | ||||||
地上生物量AB | -0.182 | 0.272 | -0.250 | 0.311 | |||||
地下生物量UB | -0.267 | 0.233 | -0.183 | 0.232 | 0.591** | ||||
根冠比RSR | -0.223 | -0.091 | 0.117 | 0.112 | -0.056 | 0.661*** | |||
根总长度TRL | 0.342 | 0.338 | -0.301 | -0.053 | 0.207 | 0.353 | 0.172 | ||
根尖数NRT | 0.008 | 0.403* | -0.285 | 0.190 | 0.336 | 0.621*** | 0.337 | 0.648*** | |
根体积RV | -0.116 | -0.148 | -0.161 | 0.118 | 0.006 | 0.318 | 0.347 | -0.073 | -0.095 |
Table 5 Analysis of correlation of 10 copper resistance indexes
性状 Traits | 发芽率 GR | 胚根长度 RL | 胚根直径RD | 存活率 SR | 地上生物量 AB | 地下生物量 UB | 根冠比RSR | 根总长度TRL | 根尖数NRT |
---|---|---|---|---|---|---|---|---|---|
胚根长度RL | -0.032 | ||||||||
胚根直径RD | -0.063 | -0.508** | |||||||
存活率SR | -0.190 | 0.134 | 0.075 | ||||||
地上生物量AB | -0.182 | 0.272 | -0.250 | 0.311 | |||||
地下生物量UB | -0.267 | 0.233 | -0.183 | 0.232 | 0.591** | ||||
根冠比RSR | -0.223 | -0.091 | 0.117 | 0.112 | -0.056 | 0.661*** | |||
根总长度TRL | 0.342 | 0.338 | -0.301 | -0.053 | 0.207 | 0.353 | 0.172 | ||
根尖数NRT | 0.008 | 0.403* | -0.285 | 0.190 | 0.336 | 0.621*** | 0.337 | 0.648*** | |
根体积RV | -0.116 | -0.148 | -0.161 | 0.118 | 0.006 | 0.318 | 0.347 | -0.073 | -0.095 |
材料编号 Germplasm code | 综合评价 Comprehensive evaluation | 回归模型 Regression model | 材料编号 Germplasm code | 综合评价 Comprehensive evaluation | 回归模型 Regression model | ||||
---|---|---|---|---|---|---|---|---|---|
关联系数 Correlation | 排序 Order | 预测值 Predicted value | 预测排序 Order | 关联系数 Correlation | 排序 Order | 预测值 Predicted value | 预测排序 Order | ||
CF022167 | 0.698 | 1 | 0.469 | 1 | CF022212 | 0.501 | 16 | 0.364 | 16 |
CF022178 | 0.643 | 2 | 0.428 | 2 | CF022325 | 0.494 | 17 | 0.364 | 17 |
CF022232 | 0.636 | 3 | 0.421 | 4 | CF022199 | 0.491 | 18 | 0.355 | 19 |
CF022202 | 0.615 | 4 | 0.414 | 5 | CF022171 | 0.483 | 19 | 0.361 | 18 |
CF022230 | 0.604 | 5 | 0.422 | 3 | CF022151 | 0.483 | 20 | 0.346 | 21 |
CF022231 | 0.602 | 6 | 0.404 | 7 | CF000802 | 0.481 | 21 | 0.352 | 20 |
CF022233 | 0.588 | 7 | 0.413 | 6 | CF022150 | 0.478 | 22 | 0.344 | 22 |
CF002082 | 0.583 | 8 | 0.398 | 8 | CF022168 | 0.478 | 23 | 0.341 | 23 |
CF022235 | 0.570 | 9 | 0.388 | 9 | CF022211 | 0.470 | 24 | 0.327 | 24 |
EM00081 | 0.529 | 10 | 0.380 | 11 | CF022175 | 0.455 | 25 | 0.324 | 25 |
CF022156 | 0.521 | 11 | 0.380 | 12 | CF022181 | 0.431 | 26 | 0.307 | 27 |
CF022172 | 0.507 | 12 | 0.386 | 10 | CF022179 | 0.422 | 27 | 0.311 | 26 |
CF022173 | 0.505 | 13 | 0.374 | 13 | CF022169 | 0.398 | 28 | 0.296 | 28 |
CF022188 | 0.503 | 14 | 0.369 | 14 | CF022161 | 0.391 | 29 | 0.296 | 29 |
CF022165 | 0.502 | 15 | 0.365 | 15 | CF022234 | 0.390 | 30 | 0.287 | 30 |
Table 6 Comprehensive evaluation and prediction value based on 4 important traits of copper tolerance in red clover
材料编号 Germplasm code | 综合评价 Comprehensive evaluation | 回归模型 Regression model | 材料编号 Germplasm code | 综合评价 Comprehensive evaluation | 回归模型 Regression model | ||||
---|---|---|---|---|---|---|---|---|---|
关联系数 Correlation | 排序 Order | 预测值 Predicted value | 预测排序 Order | 关联系数 Correlation | 排序 Order | 预测值 Predicted value | 预测排序 Order | ||
CF022167 | 0.698 | 1 | 0.469 | 1 | CF022212 | 0.501 | 16 | 0.364 | 16 |
CF022178 | 0.643 | 2 | 0.428 | 2 | CF022325 | 0.494 | 17 | 0.364 | 17 |
CF022232 | 0.636 | 3 | 0.421 | 4 | CF022199 | 0.491 | 18 | 0.355 | 19 |
CF022202 | 0.615 | 4 | 0.414 | 5 | CF022171 | 0.483 | 19 | 0.361 | 18 |
CF022230 | 0.604 | 5 | 0.422 | 3 | CF022151 | 0.483 | 20 | 0.346 | 21 |
CF022231 | 0.602 | 6 | 0.404 | 7 | CF000802 | 0.481 | 21 | 0.352 | 20 |
CF022233 | 0.588 | 7 | 0.413 | 6 | CF022150 | 0.478 | 22 | 0.344 | 22 |
CF002082 | 0.583 | 8 | 0.398 | 8 | CF022168 | 0.478 | 23 | 0.341 | 23 |
CF022235 | 0.570 | 9 | 0.388 | 9 | CF022211 | 0.470 | 24 | 0.327 | 24 |
EM00081 | 0.529 | 10 | 0.380 | 11 | CF022175 | 0.455 | 25 | 0.324 | 25 |
CF022156 | 0.521 | 11 | 0.380 | 12 | CF022181 | 0.431 | 26 | 0.307 | 27 |
CF022172 | 0.507 | 12 | 0.386 | 10 | CF022179 | 0.422 | 27 | 0.311 | 26 |
CF022173 | 0.505 | 13 | 0.374 | 13 | CF022169 | 0.398 | 28 | 0.296 | 28 |
CF022188 | 0.503 | 14 | 0.369 | 14 | CF022161 | 0.391 | 29 | 0.296 | 29 |
CF022165 | 0.502 | 15 | 0.365 | 15 | CF022234 | 0.390 | 30 | 0.287 | 30 |
1 | Gu J G, Zhou Q X, Wang X. Reused path of heavy metal pollution in soils and its research advance. Journal of Basic Science and Engineering, 2003, 11(2): 43-51. |
2 | Li T, Wu R, Li J, et al. Evaluation of soil heavy metal pollution in greenhouses with different planting years. Journal of Henan Agricultural Sciences, 2016, 45(12): 62-66. |
李曈, 吴荣, 李杰, 等. 不同使用年限大棚土壤重金属污染评价. 河南农业科学, 2016, 45(12): 62-66. | |
3 | Inmaculada Y. Copper in plants: Acquisition, transport and interactions. Functional Plant Biology, 2009, 36(5): 409-430. |
4 | Taylor A A, Tsuji J S, Garry M R, et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environmental Management, 2020, 65(1): 131-159. |
5 | Brunetto G, Wellington B D M G, Terzano R, et al. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 2016, 162(11): 293-307. |
6 | Cao Z H, Hu Z Y. Copper contamination in paddy soils irrigated with waste water. Chemosphere, 2000, 41(1): 3-6. |
7 | Kopittke P M, Blamey F P, Asher C J, et al. Trace metal phytotoxicity in solution culture: A review. Journal of Experimental Botany, 2010, 61(4): 945-954. |
8 | Wei B G, Yang L S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 2010, 94(2): 99-107. |
9 | Li F, Liu S Y, Li Y, et al. Spatiotemporal variability and source apportionment of soil heavy metals in a industrially developed city. Environmental Science, 2019, 40(2): 934-944. |
李锋, 刘思源, 李艳, 等. 工业发达城市土壤重金属时空变异与源解析. 环境科学, 2019, 40(2): 934-944. | |
10 | Li W Q, Khan M A, Yamaguchi S, et al. Effects of heavy metals on seed germination and seedling growth of Arabidopsis thaliana. Plant Growth Regulation, 2005, 46(1): 45-50. |
11 | Yadav P, Kaur R, Kanwar M K, et al. Ameliorative role of castasterone on copper metal toxicity by improving redox homeostasis in Brassica juncea L. Journal of Plant Growth Regulation, 2017, 37(4): 1-16. |
12 | Shu W S, Yang K Y, Zhang Z Q, et al. Flora and heavy metals in dominant plants growing on an ancient copper spoil heap on Tonglushan in Hubei Province, China. Chinese Journal of Applied and Environmental Biology, 2001, 7(1): 7-12. |
束文圣, 杨开颜, 张志权, 等. 湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究. 应用与环境生物学报, 2001, 7(1): 7-12. | |
13 | Wang M, Li S S, Li X Y, et al. An overview of current status of copper pollution in soil and remediation efforts in China. Earth Science Frontiers, 2018, 25(5): 305-313. |
王萌, 李杉杉, 李晓越, 等. 我国土壤铜的污染现状与修复研究进展. 地学前缘, 2018, 25(5): 305-313. | |
14 | Mirlean N, Roisenberg A, Chies J O. Metal contamination of vineyard soils in wet subtropics (Southern Brazil). Environmental Pollution, 2007, 149(1): 10-17. |
15 | Wang Q Y, Zhou D M, Long C. Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide. Soil Biology and Biochemistry, 2009, 41(7): 1504-1509. |
16 | Wang Q Y, Liu J S, Wang Y, et al. Accumulations of copper in apple orchard soils: Distribution and availability in soil aggregate fractions. Journal of Soils and Sediments, 2015, 15(5): 1075-1082. |
17 | Mahar A, Wang P, Ali A, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 2016, 126: 111-121. |
18 | Huang J, Zhu X Y, Lu J, et al. Effects of different land use types on microbial community diversity in the Shizishan mining area. Environmental Science, 2019, 40(12): 5550-5560. |
黄健, 朱旭炎, 陆金, 等. 狮子山矿区不同土地利用类型对土壤微生物群落多样性的影响. 环境科学, 2019, 40(12): 5550-5560. | |
19 | Fan J, He Z, Ma L Q, et al. Accumulation and availability of copper in citrus grove soils as affected by fungicide application. Journal Soils and Sediments, 2011, 11(4): 639-648. |
20 | Fan J, He Z, Ma L Q, et al. Impacts of calcium water treatment residue on the soil-water-plant system in citrus production. Plant and Soil, 2014, 374(1/2): 993-1004. |
21 | Li N, Wu L H, Li F Y, et al. Biomass and copper contents of Elsholtzia splendens on different copper contaminated soils. Soils, 2006, 38(5): 598-601. |
李宁, 吴龙华, 李法云, 等. 不同铜污染土壤上海洲香薷生长及铜吸收动态. 土壤, 2006, 38(5): 598-601. | |
22 | Li Y, Wang Y B. Research on Cu uptake and tolerance of four Pteridophyta plants. Acta Prataculturae Sinica, 2010, 19(3): 191-197. |
李影, 王友保. 4种蕨类草本植物对Cu的吸收和耐性研究. 草业学报, 2010, 19(3): 191-197. | |
23 | Xu L, Zhou J, Liang J N, et al. The remediation potential of Pennisetum sp. on Cu, Cd contaminated soil. Acta Ecologica Sinica, 2014, 34(18): 5342-5348. |
徐磊, 周静, 梁家妮, 等. 巨菌草对Cu、Cd 污染土壤的修复潜力. 生态学报, 2014, 34(18): 5342-5348. | |
24 | Long J, Huang C Y, Teng Y, et al. Effects of copper mine tailings on growing status of five forage grass species. Grassland of China, 2003, 25(2): 18-21. |
龙健, 黄昌勇, 滕应, 等. 铜尾矿对五种牧草生长情况的影响. 中国草地, 2003, 25(2): 18-21. | |
25 | Gao Z, Wang X L, Liu T Y, et al. Effects of heavy metals copper pollution on seed germination and seedlings growth of Sorghum sudanense (Piper) Stapf. Chinese Agricultural Science Bulletin, 2013, 29(25): 199-204. |
高柱, 王小玲, 刘腾云, 等. 重金属Cu污染对苏丹草种子发芽及幼苗生长的影响. 中国农学通报, 2013, 29(25): 199-204. | |
26 | Shamina S, Sugiyama S. Cadmium phytoextraction capacity in eight C3 herbage grass species. Grassland Science, 2008, 54(1): 27-32. |
27 | Peralta-Videa J R, Garden-Torresdey J L, Gomez E, et al. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 2002, 119(3): 291-301. |
28 | Zhang Z F, Gong L X, Wen Z Z, et al. Effect of acid-copper stress on seed germination and root growth of Medicago sativa. Chinese Journal of Grassland, 2017, 39(3): 72-76. |
张志飞, 龚梨霞, 文昭竹, 等. 酸铜对紫花苜蓿种子萌发及根系生长的影响. 中国草地学报, 2017, 39(3): 72-76. | |
29 | Zeng X L, Han F, Zhong Y M, et al. Study on selenium- and strontium-concentrating capacity of milk vetch, sesbania and smooth vetch. Fujian Agricultural Science and Technology, 2017(1): 15-19. |
曾宪录, 韩飞, 钟艳梅, 等. 紫云英、田菁及光叶苕子富集硒、锶能力研究. 福建农业科技, 2017(1): 15-19. | |
30 | Han X S, Cao C Y, Yao J D, et al. Effects of copper and cadmium on leguminous plant growth and nutrient uptake. Chinese Journal of Ecology, 2009, 28(11): 2250-2256. |
韩晓姝, 曹成有, 姚金冬, 等. 铜、镉对三种豆科植物生长及氮磷钾含量的影响. 生态学杂志, 2009, 28(11): 2250-2256. | |
31 | Wang S Q, Hu Y G, She K J, et al. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Scientia Agricultura Sinica, 2007, 40(11): 2452-2459. |
王士强, 胡银岗, 佘奎军, 等. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40(11): 2452-2459. | |
32 | Jiang H X, Bai S S, Wu B, et al. A multivariate evaluation of agronomic straits and forage quality of 22 oat varieties in the Huang-Huai-Hai area of China. Acta Prataculturae Sinica, 2021, 30(1): 140-149. |
姜慧新, 柏杉杉, 吴波, 等. 22个燕麦品种在黄淮海地区的农艺性状与饲草品质综合评价. 草业学报, 2021, 30(1): 140-149. | |
33 | Zhang H S, Liu Y, Wang F, et al. The comprehensive evaluation of heat tolerance of 18 Trifolium varieties. Pratacultural Science, 2009, 26(7): 44-49. |
张鹤山, 刘洋, 王凤, 等. 18个三叶草品种耐热性综合评价. 草业科学, 2009, 26(7): 44-49. | |
34 | Li G L, Wang Q, Wang J S, et al. Mechanisms of stress and mitigation of heavy metals on seed germination of plants. Biotechnology Bulletin, 2019, 35(6): 147-155. |
李桂玲, 王琦, 王金水, 等. 重金属对植物种子萌发胁迫及缓解的机制. 生物技术通报, 2019, 35(6): 147-155. | |
35 | Thounaojam T C, Panda P, Mazumdar P, et al. Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 2012, 53: 33-39. |
36 | Küpper H, Andresen E. Mechanisms of metal toxicity in plants. Metallomics, 2016, 8: 269-285. |
37 | Lequeux H, Hermans C, Lutts S, et al. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 2010, 48(8): 673-682. |
38 | Raeymaekers T, Potters G, Asard H, et al. Copper-mediated oxidative burst in Nicotiana tabacum L. cv. bright yellow 2 cell suspension cultures. Protoplasma, 2003, 221(1/2): 93-100. |
39 | Yu X J, Zhang J W, Pan T T, et al. Effects of heavy metals: Copper, cadmium and lead on the seed germination and seedling growth of leguminous forage. Acta Agrestia Sinica, 2015, 23(4): 793-802. |
鱼小军, 张建文, 潘涛涛, 等. 铜、镉、铅对7 种豆科牧草种子萌发和幼苗生长的影响. 草地学报, 2015, 23(4): 793-802. | |
40 | Aydinalp C, Marinova S. The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulgarian Journal of Agricultural Science, 2009, 15(4): 347-350. |
41 | Xin B B, Yuan Q H, Wang Y. Comprehensive evaluation of Co2+ resistance and enrichment features of Italian ryegrass accessions at seedling stage. Acta Agrestia Sinica, 2012, 20(6): 1123-1131. |
辛宝宝, 袁庆华, 王瑜. 多年生黑麦草种质材料苗期耐钴性综合评价及钴离子富集特性研究. 草地学报, 2012, 20(6): 1123-1131. | |
42 | Cui J L, Zhao Y P, Lu Y J, et al. Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Environment International, 2019, 126: 717-726. |
43 | Xu Y, Yu W, Ma Q, et al. Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings. Ecotoxicology and Environmental Safety, 2017, 142(8): 250-256. |
44 | Nazir F, Hussain A, Fariduddin Q. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, 2019, 230(9): 544-558. |
45 | Zhao S Y, Chen F, Zhang H S, et al. Evaluation of copper tolerance of 51 red clover germplasm resources at germination stage. Seed, 2019, 38(4): 10-14. |
赵思怡, 陈菲, 张鹤山, 等. 51份红三叶种质资源萌发期耐铜性评价. 种子, 2019, 38(4): 10-14. | |
46 | Kopittke P M, Menzies N W. Effect of Cu toxicity on growth of cowpea (Vigna unguiculata). Plant and Soil, 2006, 279(1/2): 287-296. |
47 | Feigl G, Kumar D, Lehotai N, et al. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage. Acta Biologica Hungarica, 2015, 66(2): 205-221. |
48 | Wang B, Huang P, Lv D Y, et al. Effects of Pb and Cd on the seed germination and seedling growth of Triarrhena lutarioriparia. Ecology and Environmental Sciences, 2018, 27(9): 1768-1773. |
王波, 黄攀, 吕徳雅, 等. 铅、镉对南荻种子萌发和幼苗生长的影响. 生态环境学报, 2018, 27(9): 1768-1773. | |
49 | Chen J R, Liu D, Wu J S, et al. Seed germination and metal accumulation of Moso bamboo (Phyllostachys pubescens) under heavy metal exposure. Acta Ecologica Sinica, 2014, 34(22): 6501-6509. |
陈俊任, 柳丹, 吴家森, 等. 重金属胁迫对毛竹种子萌发及其富集效应的影响. 生态学报, 2014, 34(22): 6501-6509. | |
50 | Boojar M M A, Goodarzi F. The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere, 2007, 67(11): 2138-2147. |
51 | Zhang H, Shen Z J, Chen Z, et al. An investigation of heavy-metal, nitrogen and phosphorus concentration in nine dominant plant species in a copper mine tailings area. Ecology and Environmental Sciences, 2011, 20(10): 1478-1484. |
张宏, 沈章军, 陈政, 等. 铜尾矿区9种优势植物体内重金属和氮磷含量研究. 生态环境学报, 2011, 20(10): 1478-1484. | |
52 | Zhang L P, Shen Y T. Study on copper absorption, accumulation and tolerance mechanism of alfalfa. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1129-1136. |
张丽萍, 沈亚婷. 紫花苜蓿对铜的吸收、积累和耐受机制研究. 分析化学, 2017, 45(8): 1129-1136. | |
53 | Wang R, Fu W, Wang J, et al. Application of rice grain husk derived biochar in ameliorating toxicity impacts of Cu and Zn on growth, physiology and enzymatic functioning of wheat seedlings. Bulletin of Environmental Contamination and Toxicology, 2019, 103(4): 636-641. |
54 | Chibuike G U, Obiora S C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014(1): 1-12. |
55 | Xu Z M, Chen L, Liu Y Z, et al. Effects of Cu2+ and Zn2+ stress on seed germination and antioxidant characteristics of Muhlenbergia capillaris. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(3): 326-333. |
许志敏, 陈琳, 刘燕珍, 等. Cu2+、Zn2+胁迫对粉黛乱子草种子萌发及抗氧化特征影响. 福建农林大学学报(自然科学版), 2020, 49(3): 326-333. | |
56 | Hu B Y, Fang Z G, Lou L Q, et al. Comprehensive evaluation of cadmium tolerance of 14 switchgrass (Panicum virgatum) cultivars in the seedling stage. Acta Prataculturae Sinica, 2019, 28(1): 27-36. |
胡冰钰, 方志刚, 娄来清, 等. 14份柳枝稷种质资源苗期耐镉性综合评价. 草业学报, 2019, 28(1): 27-36. | |
57 | Wang M M, Zhou X R, Liang G L, et al. A multi-trait evaluation of salt tolerance of 5 oat germplasm lines at the seedling stage. Acta Prataculturae Sinica, 2020, 29(8): 143-154. |
王苗苗, 周向睿, 梁国玲, 等. 5份燕麦材料苗期耐盐性综合评价. 草业学报, 2020, 29(8): 143-154. | |
58 | Fan Z X, Li S C, Sun H L. Physiological response of Amorpha fruiticosa to drought stress under paclobutrazol application and an evaluation of drought resistance. Acta Prataculturae Sinica, 2017, 26(3): 132-141. |
范志霞, 李绍才, 孙海龙. 多效唑作用下紫穗槐对干旱胁迫的生理响应及抗旱性评价. 草业学报, 2017, 26(3): 132-141. | |
59 | Wang Y, Jia Z L, Ren D X, et al. Evaluation on advanced lines of potato drought-resistance traits by subordinate function values analysis. Seed, 2017, 36(6): 72-75. |
王燕, 贾智麟, 任冬雪, 等. 隶属函数法评价马铃薯高代品系材料的抗旱性. 种子, 2017, 36(6): 72-75. | |
60 | Zhang H S, Wang Z Y, Chen Z H, et al. A study on morphological variation of 45 red clover germplasms. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(5): 923-931. |
张鹤山, 王志勇, 陈志宏, 等. 45份红三叶种质表观性状变异研究. 江西农业大学学报, 2020, 42(5): 923-931. | |
61 | Wang R, Li P Y, Sun Z J, et al. Evaluation of salt tolerance of 42 Elytrigia repens at seedling stage under hydroponic condition. Chinese Journal of Grassland, 2020, 42(5): 22-30. |
王瑞, 李培英, 孙宗玖, 等. 水培下42份偃麦草种质苗期耐盐性评价. 中国草地学报, 2020, 42(5): 22-30. |
[1] | Chuan-qi WANG, Wen-hui LIU, Yong-chao ZHANG, Qing-ping ZHOU. Studies on drought tolerance of wild Elymus sibiricus at the seedling stage [J]. Acta Prataculturae Sinica, 2021, 30(8): 127-136. |
[2] | Dou-dou LIN, Gui-qin ZHAO, Ze-liang JU, Wen-long GONG. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage [J]. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
[3] | Hui-xin JIANG, Shan-shan BAI, Bo WU, Jing-yi SONG, Guo-liang WANG. A multivariate evaluation of agronomic straits and forage quality of 22 oat varieties in the Huang-Huai-Hai area of China [J]. Acta Prataculturae Sinica, 2021, 30(1): 140-149. |
[4] | LIANG Kun-lun, JIA Cun-zhi, SUN Jin-hao, WANG Ming-yan, FU Hua, MAO Zhu-xin. Evaluation of physiological responses and tolerance to low-temperature stress of ten Elymus nutans varieties [J]. Acta Prataculturae Sinica, 2019, 28(3): 111-121. |
[5] | PU Xiao-jian, TIAN Jiu-sheng, TIAN Xin-hui, DU Wen-hua. Construction of the AFLP linkage map and QTL analysis of powdery mildew resistance in red clover [J]. Acta Prataculturae Sinica, 2018, 27(4): 79-88. |
[6] | FAN Zhi-Xia, LI Shao-Cai, SUN Hai-Long. Physiological response of Amorpha fruiticosa to drought stress under paclobutrazol application and an evaluation of drought resistance [J]. Acta Prataculturae Sinica, 2017, 26(3): 132-141. |
[7] | MENG Li-Juan, ZHAO Gui-Qin. Evaluation of the adaptability of imported red clover germplasm in central Gansu [J]. Acta Prataculturae Sinica, 2015, 24(9): 30-42. |
[8] | JIANG Yi-bao, YANG Yu-rong, FENG Chang-song, WANG Cheng-zhang, CUI Guo-wen. Effects of red clover isoflavones on ascites syndrome incidence and antioxidant activity of broiler induced by cold exposure [J]. Acta Prataculturae Sinica, 2013, 22(2): 94-99. |
[9] | YU Lian-ping, HAO Zheng-li, LI Fa-di, MENG Xiang-jun, CHEN Xing-rong, LI Xin-yuan. Effect of isoflavone in red clover on the growth and immune functions, and in the antioxidant indices in ovariectomized rats [J]. Acta Prataculturae Sinica, 2012, 21(6): 137-144. |
[10] | CHONG Pei-fang, SU Shi-ping, LI Yi. Comprehensive evaluation of drought resistance of Reaumuria soongorica from four geographical populations [J]. Acta Prataculturae Sinica, 2011, 20(5): 26-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||