Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (5): 75-83.DOI: 10.11686/cyxb2020505
Previous Articles Next Articles
Qiao-yu LUO1,2(), Yan-long WANG1, Zhi CHEN2, Yong-gui MA2, Qi-mei REN2, Yu-shou MA1()
Received:
2020-11-16
Revised:
2021-01-07
Online:
2021-05-20
Published:
2021-04-16
Contact:
Yu-shou MA
Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa[J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83.
水分处理Water treatment | P5CS | P5CDH | δ-OAT | P5CR | ProDH | |||||
---|---|---|---|---|---|---|---|---|---|---|
地上部分 Shoot | 地下部分 Root | 地上部分 Shoot | 地下部分 Root | 地上部分 Shoot | 地下部分 Root | 地上部分 Shoot | 地下部分 Root | 地上部分 Shoot | 地下部分 Root | |
MW | 10.74±0.53a | 7.72±0.34bc | 6.37±0.42ab | 7.26±0.17b | 22.22±1.82ab | 23.76±0.94a | 15.09±1.06a | 5.36±0.18ab | 1.41±0.06a | 2.06±0.07a |
LW | 11.37±0.61a | 10.39±0.29a | 7.44±0.28ab | 6.57±0.51b | 28.91±3.04a | 20.87±0.44b | 13.89±0.55ab | 6.00±0.20a | 1.33±0.04a | 1.84±0.06a |
CK | 8.77±0.17b | 6.84±0.09c | 9.83±2.24a | 8.96±0.45a | 20.85±0.56b | 13.19±0.81d | 11.35±0.49c | 4.59±0.23c | 1.43±0.01a | 2.00±0.15a |
LD | 7.98±0.38b | 7.46±0.53bc | 5.61±0.25b | 7.03±0.28b | 27.93±2.34a | 18.27±0.87c | 11.96±0.23bc | 5.56±0.18a | 1.11±0.04b | 1.92±0.11a |
MD | 12.32±0.93a | 7.98±0.25b | 8.14±1.44ab | 7.24±0.29b | 24.58±1.36ab | 17.81±0.56c | 15.07±0.92a | 4.90±0.21bc | 1.07±0.08b | 2.10±0.13a |
Table 1 Activity of key enzymes in Pro metabolism in the shoot/root of D. caespitosa under different water treatments (U·g-1 FW)
水分处理Water treatment | P5CS | P5CDH | δ-OAT | P5CR | ProDH | |||||
---|---|---|---|---|---|---|---|---|---|---|
地上部分 Shoot | 地下部分 Root | 地上部分 Shoot | 地下部分 Root | 地上部分 Shoot | 地下部分 Root | 地上部分 Shoot | 地下部分 Root | 地上部分 Shoot | 地下部分 Root | |
MW | 10.74±0.53a | 7.72±0.34bc | 6.37±0.42ab | 7.26±0.17b | 22.22±1.82ab | 23.76±0.94a | 15.09±1.06a | 5.36±0.18ab | 1.41±0.06a | 2.06±0.07a |
LW | 11.37±0.61a | 10.39±0.29a | 7.44±0.28ab | 6.57±0.51b | 28.91±3.04a | 20.87±0.44b | 13.89±0.55ab | 6.00±0.20a | 1.33±0.04a | 1.84±0.06a |
CK | 8.77±0.17b | 6.84±0.09c | 9.83±2.24a | 8.96±0.45a | 20.85±0.56b | 13.19±0.81d | 11.35±0.49c | 4.59±0.23c | 1.43±0.01a | 2.00±0.15a |
LD | 7.98±0.38b | 7.46±0.53bc | 5.61±0.25b | 7.03±0.28b | 27.93±2.34a | 18.27±0.87c | 11.96±0.23bc | 5.56±0.18a | 1.11±0.04b | 1.92±0.11a |
MD | 12.32±0.93a | 7.98±0.25b | 8.14±1.44ab | 7.24±0.29b | 24.58±1.36ab | 17.81±0.56c | 15.07±0.92a | 4.90±0.21bc | 1.07±0.08b | 2.10±0.13a |
指标Indicator | Pro | Glu | Orn | GSA | P5C | P5CS | P5CDH | P5CR | ProDH |
---|---|---|---|---|---|---|---|---|---|
Glu | 0.363 | ||||||||
Orn | -0.024 | -0.088 | |||||||
GSA | 0.076 | -0.008 | 0.904** | ||||||
P5C | -0.352 | -0.518* | 0.641* | 0.491 | |||||
P5CS | 0.686** | 0.599* | -0.102 | 0.035 | -0.453 | ||||
P5CDH | 0.517* | 0.566* | 0.154 | 0.215 | -0.141 | 0.502 | |||
P5CR | 0.808** | 0.404 | -0.243 | -0.103 | -0.353 | 0.654** | 0.521* | ||
ProDH | -0.235 | 0.593* | -0.305 | -0.289 | -0.512 | 0.010 | -0.049 | -0.200 | |
δ-OAT | 0.194 | -0.011 | 0.615* | 0.550* | 0.606* | 0.061 | 0.497 | 0.094 | -0.452 |
Table 2 Correlation analysis of metabolites and key enzymes in Pro metabolism in the shoot of D. caespitosa
指标Indicator | Pro | Glu | Orn | GSA | P5C | P5CS | P5CDH | P5CR | ProDH |
---|---|---|---|---|---|---|---|---|---|
Glu | 0.363 | ||||||||
Orn | -0.024 | -0.088 | |||||||
GSA | 0.076 | -0.008 | 0.904** | ||||||
P5C | -0.352 | -0.518* | 0.641* | 0.491 | |||||
P5CS | 0.686** | 0.599* | -0.102 | 0.035 | -0.453 | ||||
P5CDH | 0.517* | 0.566* | 0.154 | 0.215 | -0.141 | 0.502 | |||
P5CR | 0.808** | 0.404 | -0.243 | -0.103 | -0.353 | 0.654** | 0.521* | ||
ProDH | -0.235 | 0.593* | -0.305 | -0.289 | -0.512 | 0.010 | -0.049 | -0.200 | |
δ-OAT | 0.194 | -0.011 | 0.615* | 0.550* | 0.606* | 0.061 | 0.497 | 0.094 | -0.452 |
指标Indicator | Pro | Glu | Orn | GSA | P5C | P5CS | P5CDH | P5CR | ProDH |
---|---|---|---|---|---|---|---|---|---|
Glu | -0.144 | ||||||||
Orn | 0.159 | -0.656** | |||||||
GSA | 0.484 | -0.389 | 0.520* | ||||||
P5C | 0.370 | -0.773** | 0.806** | 0.626* | |||||
P5CS | 0.512 | -0.514 | 0.193 | 0.650** | 0.433 | ||||
P5CDH | -0.672** | -0.016 | -0.214 | -0.777** | -0.599* | -0.114 | |||
P5CR | 0.507 | -0.537* | 0.699** | 0.815** | 0.645** | 0.508 | -0.468 | ||
ProDH | -0.238 | 0.494 | -0.331 | -0.350 | -0.296 | -0.368 | -0.045 | -0.367 | |
δ-OAT | -0.146 | -0.606* | 0.546* | 0.432 | 0.488 | 0.493 | 0.443 | 0.357 | -0.337 |
Table 3 Correlation analysis of metabolites and key enzymes in Pro metabolism in the root of D. caespitosa
指标Indicator | Pro | Glu | Orn | GSA | P5C | P5CS | P5CDH | P5CR | ProDH |
---|---|---|---|---|---|---|---|---|---|
Glu | -0.144 | ||||||||
Orn | 0.159 | -0.656** | |||||||
GSA | 0.484 | -0.389 | 0.520* | ||||||
P5C | 0.370 | -0.773** | 0.806** | 0.626* | |||||
P5CS | 0.512 | -0.514 | 0.193 | 0.650** | 0.433 | ||||
P5CDH | -0.672** | -0.016 | -0.214 | -0.777** | -0.599* | -0.114 | |||
P5CR | 0.507 | -0.537* | 0.699** | 0.815** | 0.645** | 0.508 | -0.468 | ||
ProDH | -0.238 | 0.494 | -0.331 | -0.350 | -0.296 | -0.368 | -0.045 | -0.367 | |
δ-OAT | -0.146 | -0.606* | 0.546* | 0.432 | 0.488 | 0.493 | 0.443 | 0.357 | -0.337 |
1 | Hou M J, Gao J L, Ge J, et al. An analysis of dynamic changes and their driving factors in marsh wetlands in the Eastern Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 2020, 29(1): 13-27. |
侯蒙京, 高金龙, 葛静, 等. 青藏高原东部高寒沼泽湿地动态变化及其驱动因素研究. 草业学报, 2020, 29(1): 13-27. | |
2 | Brierley G J, Li X L, Cullum C, et al. Wetland and its degradation in the Yellow River Source Zone. Springer Geography, 2016(10): 209-232. |
3 | Duggan E M F, Pagès J F, Jenkins S R, et al. External conditions drive optimal planting configurations for salt marsh restoration. Journal of Applied Ecology, 2020, 57(3): 619-629. |
4 | Brisson J, Rodriguez M, Martin C A, et al. Plant diversity effect on water quality in wetlands: A meta-analysis based on experimental systems. Ecological Applications, 2020, 30(4): e02074. |
5 | Zhu Y J, Ma M Y, Zhao N N. Progress and prospect of restoration technology of degraded alpine peatlands in Zoige Plateau. Chinese Journal of Ecology, 2020, 39(12): 4185-4192. |
朱耀军, 马牧源, 赵娜娜. 若尔盖高寒泥炭地修复技术进展与展望. 生态学杂志, 2020, 39(12): 4185-4192. | |
6 | Wang Y L, Ma Y S, Shi J J, et al. Study on cultivation and domestication of Deschampsia caespitosa. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2019, 49(2): 21-24. |
王彦龙, 马玉寿, 施建军, 等. 发草栽培驯化研究初报. 青海畜牧兽医杂志, 2019, 49(2): 21-24. | |
7 | Luo Q Y, Wang Y L, Du L, et al. Plant community diversity and soil factor interpretation of adaptive region of Deschampsia caespitosa in source region of Yellow River. Acta Prataculturae Sinica, 2021, 30(4): 80-89. |
罗巧玉, 王彦龙, 杜雷, 等. 黄河源区发草适生地植物群落特征及其土壤因子解释. 草业学报, 2021, 30(4):80-89. | |
8 | Li H L, Li X L, Zhou X L. Trait means predict performance under water limitation better than plasticity for seedlings of Poaceae species on the Eastern Tibetan Plateau. Ecology and Evolution, 2020, 10: 2944-2955. |
9 | Wang H X. The study of vegetation community characteristics and evaluation of LUCC in the semi-arid wetland. Beijing: Beijing Forestry University, 2012. |
王海星. 西北半干旱区湿地植被群落特征研究及其LUCC评价体系构建. 北京: 北京林业大学, 2012. | |
10 | Das S K, Patra J K, Thatoi H. Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. International Review of Hydrobiology, 2016, 101(1/2): 3-19. |
11 | Li B Z, Zhou G S. Advance in the study on drought index. Acta Ecologica Sinica, 2014, 34(5): 1043-1052. |
李柏贞, 周广胜. 干旱指标研究进展. 生态学报, 2014, 34(5): 1043-1052. | |
12 | Nadeem M, Li J J, Yahya M, et al. Research progress and perspective on drought stress in legumes: A review. International Journal of Molecular Sciences, 2019, 20(10): 2541. |
13 | Khan M S, Ahmad D, Khan M A. Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electronic Journal of Biotechnology, 2015, 18(4): 257-266. |
14 | Bian W J, Bao G Z, Qian H M, et al. Physiological response characteristics in Medicago sativa under freeze-thaw and deicing salt stress.Water, Air & Soil Pollution, 2018, 229(6): 196. |
15 | Wang K Y, Chen F Q, Huang W X. Research advance on drought stress response mechanism in plants. Journal of Agricultural Science and Technology, 2019, 21(2): 19-25. |
王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展. 中国农业科技导报, 2019, 21(2): 19-25. | |
16 | Li K, Zhou Z Y, Li S J,et al. Growth, osmotic adjustment and antioxidant capacity responses of Schizomepeta tenuifolia to drought stress. Acta Prataculturae Sinica, 2020, 29(5): 150-158. |
李柯, 周庄煜, 李四菊, 等. 荆芥的生长、渗透调节和抗氧化能力对干旱胁迫的响应. 草业学报, 2020, 29(5): 150-158. | |
17 | Boyce R L, Durtsche R D. Plant colonization of a restored wetland in Northern Kentucky: Contribution of seeding vs. natural sources. The Journal of the Torrey Botanical Society, 2020, 147(1): 9-21. |
18 | Zeng L S, Li P Y, Sun X F, et al. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang Province. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
曾令霜, 李培英, 孙晓梵, 等. 新疆不同生境狗牙根种质抗旱性综合评价. 草业学报, 2020, 29(8): 155-169. | |
19 | Tuo X Q, Li S, Wu Q S, et al. Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: Changes in chlorophyll and proline metabolism. Scientia Horticulturae, 2015, 197: 130-134. |
20 | Das B, Padhiary A K, Behera S, et al. Biochemical changes in some rice varieties in response to waterlogged and submerged Conditions. International Journal of Pure & Applied Bioscience, 2017, 5(5): 972-978. |
21 | Jia Y, Xiang Y F, Wang L L, et al. Effects of salt stress on the growth and physiological characteristics of Primula forbesii. Acta Prataculturae Sinica, 2020, 29(10): 119-128. |
贾茵, 向元芬, 王琳璐, 等. 盐胁迫对小报春生长及生理特性的影响. 草业学报, 2020, 29(10): 119-128. | |
22 | Zhong H, Dong J, Dong K H. Effect of salt stress on proline accumulation and the activities of the key enzymes involved in proline metabolism in Medicago ruthenica seedlings. Acta Prataculturae Sinica, 2018, 27(4): 189-194. |
钟华, 董洁, 董宽虎. 盐胁迫对扁蓿豆幼苗脯氨酸积累及其代谢关键酶活性的影响. 草业学报, 2018, 27(4): 189-194. | |
23 | Moukhtari A E, Cabassa-Hourton C, Farissi M, et al. How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in Plant Science, 2020, 11: 1127. |
24 | Bao G Z, Ao Q, Li Q Q, et al. Physiological characteristics of Medicago sativa L. in response to acid deposition and freeze-thaw stress. Water, Air, & Soil Pollution, 2017, 228(9): 376. |
25 | Chang Y X, Bao G Z, Zhang M Y. Effects of drought and freeze thaw stress on antioxidant enzymes activities and mass ratio of proline of Secale cereal L. Journal of Jilin University (Science Edition), 2020, 58(1): 184-188. |
常艺馨, 包国章, 张梦瑜. 干旱及冻融胁迫对黑麦草抗氧化酶活性和脯氨酸质量比的影响. 吉林大学学报(理学版), 2020, 58(1): 184-188. | |
26 | Shi Z Z, Li S, Ma S Y, et al. Response of the antioxidant system to water stress in different wheat varieties. Acta Prataculturae Sinica, 2015, 24(7): 68-78. |
时振振, 李胜, 马绍英, 等. 不同品种小麦抗氧化系统对水分胁迫的响应. 草业学报, 2015, 24(7): 68-78. | |
27 | Zhu G C. Physiological ecological studies on adaptation to water stress in Leersia hexandra as a drought-flood co-tolerant plant. Guangzhou: Sun Yat-Sen University, 2011. |
朱桂才. 共耐性植物李氏禾(Leersia hexandra)的水分逆境生理生态适应机制研究. 广州: 中山大学, 2011. | |
28 | Ogbaga C C, Stepien P, Johnson G N. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiologia Plantarum, 2014, 152(2): 389-401. |
29 | Gao J F. Plant physiology experiment guidance. Beijing: Higher Education Press, 2006: 15-16, 228-231. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 15-16, 228-231. | |
30 | Lutts S, Majerus V, Kinet J M. NaCl effects on proline metabolism in rice (Orya satica) seedlings. Physiologia Plantarum, 1999, 105(3): 450-458. |
31 | Garcia-Rios M, Fujita T, Larosa P C, et al. Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proceedings of the National Academy of Sciences, 1997, 94(15): 8249-8254. |
32 | Charest C, Phan C T. Cold acclimation of wheat (Triticum aestioum): Properties of enzymes involved in proline metabolism. Physiologia Plantarum, 1990, 80(2): 159-168. |
33 | Ren Y, Miao M, Meng Y, et al. DFR1-mediated inhibition of proline degradation pathway regulates drought and freezing tolerance in Arabidopsis. Cell Reports, 2018, 23(13): 3960-3974. |
34 | Su J C, Zhang Y H, Nie Y, et al. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Environmental and Experimental Botany, 2018, 147: 249-260. |
35 | Wani A S, Ahmad A, Hayat S, et al. Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiology and Biochemistry, 2019, 135: 385-394. |
36 | Zouari M, Ahmed C B, Zorrig W, et al. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicology & Environmental Safety, 2016, 128: 100-108. |
37 | Teh C Y, Ho C L, Shaharuddin N A, et al. Proteome of rice roots treated with exogenous proline. Biotech, 2019, 9(3): 110. |
38 | Li D Y, Yan Y Q, Yin Y, et al. Effects of Spd and NO on proline metabolic pathways of Polygonatum odoratum (Mill.) druce under salt stress. Journal of Henan Agricultural Sciences, 2018, 47(6): 111-116. |
李丹阳, 闫永庆, 殷媛, 等. 外源Spd和NO对盐胁迫下玉竹脯氨酸代谢途径的影响. 河南农业科学, 2018, 47(6): 111-116. | |
39 | Sikder R K, Wang X R, Zhang H H, et al. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum. Plant, 2020, 9(4): 450. |
40 | Zhao Y, Wei X H, Li T T. Effects of exogenous nitric oxide on seed germination and seeding growth of Chenopodium quinoa under complex saline-alkali stress. Acta Prataculturae Sinica, 2020, 29(4): 92-101. |
赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响. 草业学报, 2020, 29(4): 92-101. |
[1] | Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress [J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
[2] | Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis [J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
[3] | Qiao-yu LUO, Yan-long WANG, Lei DU, Nian LIU, Li LI, Yu-shou MA. Plant community diversity and soil factor interpretation of adaptive region of Deschampsia caespitosa in the source region of the Yellow River [J]. Acta Prataculturae Sinica, 2021, 30(4): 80-89. |
[4] | Kai-qiang LIU, Wen-hui LIU, Zhi-feng JIA, Guo-ling LIANG, Xiang MA. Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa cv. Qingyan No.1 [J]. Acta Prataculturae Sinica, 2021, 30(3): 177-188. |
[5] | Dong LI, Hong-tao SHEN, Yan-fang WANG, Yue-hua WANG, Li-jun WANG, Shi-min ZHAO, Ling LIU. Effects of exogenous melatonin on photosynthetic carbon assimilation and endogenous hormones in tobacco seedlings under drought stress [J]. Acta Prataculturae Sinica, 2021, 30(1): 130-139. |
[6] | ZENG Ling-shuang, LI Pei-ying, SUN Xiao-fan, SUN Zong-jiu. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang province [J]. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
[7] | ZHANG Yu-jun, SHANG Yi-shun, WANG Pu-chang, DING Lei-lei, ZHANG Wen, ZOU Chao. Effects of super absorbent polymers on growth and physiological characteristics of Sophora davidii vs. Panjiang seedlings under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(7): 90-98. |
[8] | WANG Yong-chao, ZHANG Ying-lei, YAN Dong-liang, HE Ling-zhi, LI Zhuo, YAN Bo-wen, SHAO Rui-xin, GUO Jia-meng, YANG Qing-hua. Physiological role of γ-aminobutyric acid in protecting the photosynthetic system of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 191-203. |
[9] | LI Ke, ZHOU Zhuang-yu, LI Si-ju, YAO Hao-zheng, ZHOU Ying, MIAO Yu-jing, TANG Xiao-qing, WANG Kang-cai. Growth, osmotic adjustment and antioxidant capacity responses of Schizonepeta tenuifolia to drought stress [J]. Acta Prataculturae Sinica, 2020, 29(5): 150-158. |
[10] | GAO Zi-qi, WANG Jia, TANG Yu-chen, WANG Ying-chun. Cloning and functional analysis of the gene NtUFGT in Nitraria tangutorum [J]. Acta Prataculturae Sinica, 2020, 29(5): 159-170. |
[11] | ZHAO Xiao-qiang, LU Yan-tian, BAI Ming-xing, XU Ming-xia, PENG Yun-ling, DING Yong-fu, ZHUANG Ze-long, CHEN Fen-qi, ZHANG Da-zhi. Response of maize genotypes with different plant architecture to drought stress [J]. Acta Prataculturae Sinica, 2020, 29(2): 149-162. |
[12] | HE Jian-jun, YAO Li-rong, WANG Jun-cheng, BIAN Xiu-xiu, SI Er-jing, YANG Ke, WANG Hua-jun, MA Xiao-le, LI Bao-chun, SHANG Xun-wu, MENG Ya-xiong. Effects of drought and salt stress on seed germination characteristics of Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2020, 29(11): 129-140. |
[13] | XU Ai-yun, CAO Bing, XIE Yun. Physiological-ecological responses of twelve herbaceous plant species under drought stress and evaluation of their drought resistance when planted in coal producting basis in arid windy and sandy areas [J]. Acta Prataculturae Sinica, 2020, 29(10): 22-34. |
[14] | MA Bi-hua, LIN Wei-hu, GAO Min, WANG Xing-di, TIAN Pei. Effects of salicylic acid and Epichloё on perennial ryegrass (Lolium perenne) under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(1): 135-144. |
[15] | LIU Ling, LI Dong, MA Yi-lin, WANG Li-jun, ZHAO Shi-min, ZHOU Jun-xue, SHEN Hong-tao, WANG Yan-fang. Alleviation of drought stress and the physiological mechanisms in tobacco seedlings treated with exogenous melatonin [J]. Acta Prataculturae Sinica, 2019, 28(8): 95-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||