Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (3): 71-84.DOI: 10.11686/cyxb2020557
Previous Articles Next Articles
Zhi-heng WANG(), Yu-qing WEI(), Yan-rong ZHAO, Yue-juan WANG
Received:
2020-12-09
Revised:
2021-01-06
Online:
2022-03-20
Published:
2022-01-15
Contact:
Yu-qing WEI
Zhi-heng WANG, Yu-qing WEI, Yan-rong ZHAO, Yue-juan WANG. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings[J]. Acta Prataculturae Sinica, 2022, 31(3): 71-84.
基因ID Gene ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
---|---|---|
gene11095 | CAAGGAGATCCTCAAGATCG | AACTTGAGGGGCTTCACCAC |
gene13164 | ACAAGCTGACTGGCGTCACT | GAGGAACTCGTGTGTCCCAG |
gene13763 | GACATCACGGGCCTCTACAT | ATGACGTACTTGGCCTCGAT |
gene17162 | ATGTGGCTCATCGACGAACT | TACGACAGGCCTTCCTGCT |
gene17374 | AATAGACCCAACTCCTGAAC | CTTCATCAAGGCTTCCACTG |
gene25496 | TCGTCATCGAGGCCTACAAG | AGGAGGGAGTTGGTGGACTT |
gene25654 | ACTCTACGAGAAGCACGAGG | TTCTTCTTCTCGTGGTGCTC |
gene31707 | GCTCATCTGCCAGGAGTACG | GTTGAGCGACTTGTAGACGG |
gene4250 | ACGTCGAGGACAATGAGACC | AGCTCGAGTACATGCAGTAG |
gene8166 | GTGGGTTATTCTTGGACACT | CTCCTATGCAGGCAATAAGC |
Table 1 Differential gene primer sequences
基因ID Gene ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
---|---|---|
gene11095 | CAAGGAGATCCTCAAGATCG | AACTTGAGGGGCTTCACCAC |
gene13164 | ACAAGCTGACTGGCGTCACT | GAGGAACTCGTGTGTCCCAG |
gene13763 | GACATCACGGGCCTCTACAT | ATGACGTACTTGGCCTCGAT |
gene17162 | ATGTGGCTCATCGACGAACT | TACGACAGGCCTTCCTGCT |
gene17374 | AATAGACCCAACTCCTGAAC | CTTCATCAAGGCTTCCACTG |
gene25496 | TCGTCATCGAGGCCTACAAG | AGGAGGGAGTTGGTGGACTT |
gene25654 | ACTCTACGAGAAGCACGAGG | TTCTTCTTCTCGTGGTGCTC |
gene31707 | GCTCATCTGCCAGGAGTACG | GTTGAGCGACTTGTAGACGG |
gene4250 | ACGTCGAGGACAATGAGACC | AGCTCGAGTACATGCAGTAG |
gene8166 | GTGGGTTATTCTTGGACACT | CTCCTATGCAGGCAATAAGC |
样品名称 Sample ID | 过滤后数据 Clean reads | 错误率 Error rate (%) | Q20值 Q20 (%) | Q30值 Q30 (%) | GC含量 GC content (%) | 定位到参考基因组上的clean reads数 The number of clean reads mapped to the reference genome |
---|---|---|---|---|---|---|
CK2_1 | 57425630 | 0.0228 | 98.89 | 96.45 | 56.48 | 55361409(96.41%) |
CK2_2 | 60983370 | 0.0226 | 98.97 | 96.66 | 56.99 | 58918196(96.61%) |
CK2_3 | 51111204 | 0.0226 | 98.98 | 96.66 | 56.47 | 49100413(96.07%) |
CK7_1 | 56728540 | 0.0241 | 98.35 | 95.14 | 57.72 | 54902246(96.78%) |
CK7_2 | 53934386 | 0.0242 | 98.31 | 95.06 | 57.05 | 52136670(96.67%) |
CK7_3 | 51439608 | 0.0239 | 98.45 | 95.34 | 55.14 | 49452077(96.14%) |
D2_1 | 52216072 | 0.0226 | 98.97 | 96.65 | 54.97 | 50289972(96.31%) |
D2_2 | 57679448 | 0.0227 | 98.95 | 96.55 | 55.20 | 55522573(96.26%) |
D2_3 | 57022218 | 0.0227 | 98.95 | 96.59 | 55.94 | 54992698(96.44%) |
D7_1 | 57220412 | 0.0240 | 98.38 | 95.20 | 56.24 | 55260378(96.57%) |
D7_2 | 52471316 | 0.0242 | 98.29 | 94.98 | 56.94 | 50624415(96.48%) |
D7_3 | 48330116 | 0.0239 | 98.42 | 95.28 | 56.13 | 46730432(96.69%) |
S2_1 | 55413052 | 0.0226 | 98.97 | 96.70 | 56.01 | 53508304(96.56%) |
S2_2 | 53001756 | 0.0227 | 98.96 | 96.61 | 55.75 | 51205821(96.61%) |
S2_3 | 50589156 | 0.0226 | 98.98 | 96.67 | 55.49 | 48505209(95.88%) |
S7_1 | 51841776 | 0.0241 | 98.33 | 95.05 | 56.38 | 50074578(96.59%) |
S7_2 | 52991606 | 0.0238 | 98.47 | 95.44 | 56.75 | 51135623(96.50%) |
S7_3 | 55635952 | 0.0239 | 98.41 | 95.27 | 55.05 | 53377926(95.94%) |
Table 2 Sample sequencing and data comparison statistics
样品名称 Sample ID | 过滤后数据 Clean reads | 错误率 Error rate (%) | Q20值 Q20 (%) | Q30值 Q30 (%) | GC含量 GC content (%) | 定位到参考基因组上的clean reads数 The number of clean reads mapped to the reference genome |
---|---|---|---|---|---|---|
CK2_1 | 57425630 | 0.0228 | 98.89 | 96.45 | 56.48 | 55361409(96.41%) |
CK2_2 | 60983370 | 0.0226 | 98.97 | 96.66 | 56.99 | 58918196(96.61%) |
CK2_3 | 51111204 | 0.0226 | 98.98 | 96.66 | 56.47 | 49100413(96.07%) |
CK7_1 | 56728540 | 0.0241 | 98.35 | 95.14 | 57.72 | 54902246(96.78%) |
CK7_2 | 53934386 | 0.0242 | 98.31 | 95.06 | 57.05 | 52136670(96.67%) |
CK7_3 | 51439608 | 0.0239 | 98.45 | 95.34 | 55.14 | 49452077(96.14%) |
D2_1 | 52216072 | 0.0226 | 98.97 | 96.65 | 54.97 | 50289972(96.31%) |
D2_2 | 57679448 | 0.0227 | 98.95 | 96.55 | 55.20 | 55522573(96.26%) |
D2_3 | 57022218 | 0.0227 | 98.95 | 96.59 | 55.94 | 54992698(96.44%) |
D7_1 | 57220412 | 0.0240 | 98.38 | 95.20 | 56.24 | 55260378(96.57%) |
D7_2 | 52471316 | 0.0242 | 98.29 | 94.98 | 56.94 | 50624415(96.48%) |
D7_3 | 48330116 | 0.0239 | 98.42 | 95.28 | 56.13 | 46730432(96.69%) |
S2_1 | 55413052 | 0.0226 | 98.97 | 96.70 | 56.01 | 53508304(96.56%) |
S2_2 | 53001756 | 0.0227 | 98.96 | 96.61 | 55.75 | 51205821(96.61%) |
S2_3 | 50589156 | 0.0226 | 98.98 | 96.67 | 55.49 | 48505209(95.88%) |
S7_1 | 51841776 | 0.0241 | 98.33 | 95.05 | 56.38 | 50074578(96.59%) |
S7_2 | 52991606 | 0.0238 | 98.47 | 95.44 | 56.75 | 51135623(96.50%) |
S7_3 | 55635952 | 0.0239 | 98.41 | 95.27 | 55.05 | 53377926(95.94%) |
1 | Yang C J. Cotton-soil water-salt interactions and irrigation management in arid areas of northwest China. Beijing: University of Chinese Academy of Sciences, 2015. |
杨传杰. 西北干旱区棉花-水盐相互作用与综合调控研究. 北京: 中国科学院大学, 2015. | |
2 | Zhu J K, Ni J P. Abiotic stress signaling and responses in plants. China Rice, 2016(6): 52-60. |
朱健康, 倪建平. 植物非生物胁迫信号转导及应答. 中国稻米, 2016(6): 52-60. | |
3 | Jaleel C A, Manivannan P, Wahid A, et al. Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 2009, 11(1): 100-105. |
4 | Zhu J K. Cell signaling under salt,water and cold stresses. Current Opinion in Plant Biology, 2001, 4(5): 401-406. |
5 | Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273. |
6 | Kawaguchi R, Girke T, Bray E A, et al. Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant Journal for Cell and Molecular Biology, 2004, 38(5): 823-839. |
7 | Li S, Fan C, Li Y, et al. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genomics, 2016, 17(1): 1-19. |
8 | Wang L, Du H, Li L, et al. De novo transcriptome sequencing and identification of genes related to salt stress in Eucommia ulmoides Oliver. Trees Structure & Function, 2018, 32(1): 1-13. |
9 | Hao L Y. Discovery of drought tolerance genes based on RNA-sequencing of maize roots and functional analysis of Zmhdz6. Beijing: Chinese Academy of Agricultural Sciences, 2018. |
郝陆洋. 基于玉米根系转录组测序的耐旱基因挖掘及Zmhdz6的功能分析. 北京: 中国农业科学院, 2018. | |
10 | Wang M, Wang Y, Zhang Y, et al. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes & Genomics, 2019, 41: 781-801. |
11 | Zhang F, Wang Y Q, Zhu K, et al. Comparative transcriptome analysis of different salt tolerance sorghum (Sorghum bicolor L. Moench) under salt stress. Scientia Agricultura Sinica, 2019, 52(22): 4002-4015. |
张飞, 王艳秋, 朱凯, 等. 不同耐盐性高粱在盐逆境下的比较转录组分析. 中国农业科学, 2019, 52(22): 4002-4015. | |
12 | Dong M, Kuerban Z, Lv P, et al. Transcriptome analysis and gene mining of salt tolerance in sorghum seedlings (Sorghum bicolor L. Moench). Scientia Agricultura Sinica, 2019, 52(22): 3987-4001. |
董明, 再吐尼古丽·库尔班, 吕芃, 等. 高粱苗期耐盐性转录组分析和基因挖掘. 中国农业科学, 2019, 52(22): 3987-4001. | |
13 | Shao D Y. Transcriptome analysis of Sorghumdochna (LT-1) under water stress. Kaifeng: Henan University, 2019. |
邵丹阳. 干旱胁迫下甜高粱(辽甜一号)转录组分析. 开封: 河南大学, 2019. | |
14 | Yang Z, Zheng H, Wei X, et al. Transcriptome analysis of sweet sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant and Soil, 2018, 430(1/2): 423-439. |
15 | Li D J. Studies on sustainable agro-ecology system of sweet sorghum. Scientia Agricultura Sinica, 2002, 35(8): 1021-1024. |
黎大爵. 甜高粱可持续农业生态系统研究. 中国农业科学, 2002, 35(8): 1021-1024. | |
16 | Hao Z G. Effects of calcium on seed germination and physiological and biochemical characteristics of sweet sorghum seedlings under cadmium stress. Yinchuan: North Minzu University, 2019. |
郝正刚. 钙对镉胁迫下甜高粱种子萌发和幼苗生理生化的影响. 银川: 北方民族大学, 2019. | |
17 | Wang Y, Stevanato P, Yu L, et al. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Journal of Plant Research, 2017, 130: 1079-1093. |
18 | Sun Y. Studies on physiology and molecular biology of tea (Camellia sinensis) ascorbate peroxidase (APX). Fuzhou: Fujian Agriculture and Forestry University, 2009. |
孙云. 茶叶抗坏血酸过氧化物酶(APX)的生理学与分子生物学研究. 福州: 福建农林大学, 2009. | |
19 | Azzouz-Olden F, Hunt A G, Dinkins R. Transcriptome analysis of drought-tolerant sorghum genotype SC56 in response to water stress reveals an oxidative stress defense strategy. Molecular Biology Reports, 2020, 47: 3291-3303. |
20 | Varoquaux N, Cole B, Gao C, et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proceedings of the National Academy of Sciences, 2019, 116(52): 27124-27132. |
21 | Forghani A H, Almodares A, Ehsanpour A A. Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweetsorghum (Sorghum bicolor [L.] Moench cv. Sofra). Applied Biological Chemistry, 2018, 63(1): 113-124. |
22 | Yao M H, Liu L, Zeng Y L. Several kinds of phytohormone in plants responses to salt-stress. Biotechnology Bulletin, 2011(11): 1-5, 25. |
姚曼红, 刘琳, 曾幼玲. 五大类传统植物激素对植物响应盐胁迫的调控. 生物技术通报, 2011(11): 1-5, 25. | |
23 | Li A J, Liu Z F. Supramolecular structural basis of the light-harvesting process in plants. Progress in Biochemistry and Biophysics, 2018, 45(9): 935-946. |
李安节, 柳振峰. 植物光系统Ⅱ捕光过程的超分子结构基础. 生物化学与生物物理进展, 2018, 45(9): 935-946. | |
24 | Brendan O, Joonho P, William C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): Recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochemical Journal, 2011, 436(1): 15-34. |
25 | Xu M Y. Effect of elevated CO2 on photosynthetic characteristics and molecular mechanism in Deyeuxia angustifolia. Harbin: Northeast Agricultural University, 2015. |
徐明怡. 模拟大气CO2升高对小叶章光合特性的影响及分子机制. 哈尔滨: 东北农业大学,2015. | |
26 | Zhang D P. An abscisic acid signaling pathway starting from plastid/chloroplast. Chinese Bulletin of Botany, 2011, 46(4): 361-369. |
张大鹏. 始于质体/叶绿体的ABA信号通路. 植物学报, 2011, 46(4): 361-369. | |
27 | Hauser F, Waadt R, Schroeder J I. Evolution of abscisic acid synthesis and signaling mechanisms. Current Biology, 2011, 21(9): 346-355. |
28 | Zhao C, Wang H Y, Liu M Z, et al. Effect of drought on the contents of soluble sugars, starch and enzyme activities in cassavastem. Plant Physiology Journal, 2017, 53(5): 795-806. |
赵超, 王海燕, 刘美珍, 等. 干旱胁迫下木薯茎秆可溶性糖、淀粉及相关酶的代谢规律. 植物生理学报, 2017, 53(5): 795-806. | |
29 | Li F, Xing S, Guo Q, et al. Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. Journal of Plant Physiology, 2011, 168(9): 960-966. |
30 | Chen C Y, Zhao X, Li X R. Osmotic adjustment mechanism of Cynanchum komarovii under drought stress. Journal of Desert Research, 2012, 32(5): 1275-1282. |
陈翠云, 赵昕, 李新荣. 干旱胁迫下牛心朴子的渗透调节机制研究. 中国沙漠, 2012, 32(5): 1275-1282. | |
31 | Xiang Y, Liu Y B, Qin L J, et al. Trehalose-6-phosphate synthase gene TPS1 from Saccharomyces cerevisiae improve root growth in transgenic maize under drought stress. Plant Physiology Journal, 2015, 51(3): 363-369. |
项阳, 刘延波, 秦利军, 等. 酵母TPS1基因促进干旱胁迫下玉米的根系生长. 植物生理学报, 2015, 51(3): 363-369. | |
32 | Han B Y, Fu L L, Zhang D, et al. Interspecies and intraspecies analysis of trehalose contents and the biosynthesis pathway gene family reveals crucial roles of trehalose in osmotic-stress tolerance in cassava. International Journal of Molecular Sciences, 2016, 17(7): 1077-1095. |
33 | Wang F X, Xiao K Z, Jiang S F, et al. Mechanisms of reactive oxygen species in plants under drought stress. Chinese Science Bulletin, 2019, 64(17): 1765-1779. |
王福祥, 肖开转, 姜身飞, 等. 干旱胁迫下植物体内活性氧的作用机制. 科学通报, 2019, 64(17): 1765-1779. | |
34 | Zhang J L, Li H R, Guo S Y, et al. Research advances in higher plant adaptation to salt stress. Acta Prataculturae Sinica, 2015, 24(12): 220-236. |
张金林, 李惠茹, 郭姝媛, 等. 高等植物适应盐逆境研究进展. 草业学报, 2015, 24(12): 220-236. | |
35 | Guo W L, Chen R G, Gong Z H, et al. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genetic & Molecular Research (GMR), 2012, 11(4): 4063-4080. |
[1] | Peng-fei GAO, Jing ZHANG, Wei-fang FAN, Bing GAO, Hong-juan HAO, Jian-hui WU. Effects of drought stress on root characteristics structure and physiological characteristics of Potentilla bifurca var. glabrata [J]. Acta Prataculturae Sinica, 2022, 31(2): 203-212. |
[2] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[3] | Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress [J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
[4] | Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83. |
[5] | An-qiao LU, Feng-ju ZHANG, Xing XU, Xue-qin WANG, Shan YAO. Effects of salt stress on growth and physiological characteristics of Echinochloa frumentacea seedlings [J]. Acta Prataculturae Sinica, 2021, 30(5): 84-93. |
[6] | Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis [J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
[7] | Kai-qiang LIU, Wen-hui LIU, Zhi-feng JIA, Guo-ling LIANG, Xiang MA. Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa cv. Qingyan No.1 [J]. Acta Prataculturae Sinica, 2021, 30(3): 177-188. |
[8] | Fang-zhen WANG, Cheng-hang YANG, Zi-hua HE, Zi-ru LIN, Hao-yuan ZENG, Qing MA. Analysis of differentially expressed protein kinase related genes in the xerophyte Pugionium cornutum under salt treatment [J]. Acta Prataculturae Sinica, 2021, 30(10): 116-124. |
[9] | Tian TIAN, Hai-jiang WANG, Jin-gang WANG, Yong-qi ZHU, Xiao-yan SHI, Wei-di LI, Wen-rui-yu LI. Effects of nitrogen application on accumulation of organic osmotic regulating substances in forage rapeseed (Brassica napus) under salt stress [J]. Acta Prataculturae Sinica, 2021, 30(10): 125-136. |
[10] | Dong LI, Hong-tao SHEN, Yan-fang WANG, Yue-hua WANG, Li-jun WANG, Shi-min ZHAO, Ling LIU. Effects of exogenous melatonin on photosynthetic carbon assimilation and endogenous hormones in tobacco seedlings under drought stress [J]. Acta Prataculturae Sinica, 2021, 30(1): 130-139. |
[11] | WANG Miao-miao, ZHOU Xiang-rui, LIANG Guo-ling, ZHAO Gui-qin, JIAO Run-an, CHAI Ji-kuan, GAO Xue-mei, LI Juan-ning. A multi-trait evaluation of salt tolerance of 5 oat germplasm lines at the seedling stage [J]. Acta Prataculturae Sinica, 2020, 29(8): 143-154. |
[12] | ZENG Ling-shuang, LI Pei-ying, SUN Xiao-fan, SUN Zong-jiu. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang province [J]. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
[13] | ZHANG Yu-jun, SHANG Yi-shun, WANG Pu-chang, DING Lei-lei, ZHANG Wen, ZOU Chao. Effects of super absorbent polymers on growth and physiological characteristics of Sophora davidii vs. Panjiang seedlings under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(7): 90-98. |
[14] | WANG Yong-chao, ZHANG Ying-lei, YAN Dong-liang, HE Ling-zhi, LI Zhuo, YAN Bo-wen, SHAO Rui-xin, GUO Jia-meng, YANG Qing-hua. Physiological role of γ-aminobutyric acid in protecting the photosynthetic system of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 191-203. |
[15] | LI Ke, ZHOU Zhuang-yu, LI Si-ju, YAO Hao-zheng, ZHOU Ying, MIAO Yu-jing, TANG Xiao-qing, WANG Kang-cai. Growth, osmotic adjustment and antioxidant capacity responses of Schizonepeta tenuifolia to drought stress [J]. Acta Prataculturae Sinica, 2020, 29(5): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||