Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (3): 101-113.DOI: 10.11686/cyxb2021294
Chang WEI1(), Qiu-juan JIAO1, Hai-tao LIU1(), Jing-jing ZHANG1, Feng-min SHEN1, Ying JIANG1(), Xue-hai ZHANG2, Luan-zi SUN3, Fang YANG4, Zhen LIU5
Received:
2021-07-27
Revised:
2021-10-08
Online:
2022-03-20
Published:
2022-01-15
Contact:
Hai-tao LIU,Ying JIANG
Chang WEI, Qiu-juan JIAO, Hai-tao LIU, Jing-jing ZHANG, Feng-min SHEN, Ying JIANG, Xue-hai ZHANG, Luan-zi SUN, Fang YANG, Zhen LIU. Physiological effects of different Cd concentrations on maize root architecture and classification[J]. Acta Prataculturae Sinica, 2022, 31(3): 101-113.
生长指标Growth index | Cd0 | Cd5 | Cd10 | Cd25 | Cd50 | Cd100 | Cd200 |
---|---|---|---|---|---|---|---|
株高Plant height (cm) | 35.73±1.72a | 33.73±1.76b | 30.33±0.80c | 28.07±0.58d | 25.17±0.40e | 20.10±1.14f | 16.87±0.80g |
地上部鲜重Shoot fresh weight (g·plant-1) | 2.52±0.12a | 1.94±0.30b | 1.62±0.17c | 1.42±0.08cd | 1.30±0.05d | 0.80±0.13e | 0.48±0.10f |
地上部干重Shoot dry weight (g·plant -1) | 0.19±0.01a | 0.16±0.02b | 0.13±0.01c | 0.11±0.00cd | 0.11±0.00d | 0.08±0.02e | 0.06±0.01e |
主根长Main root length (cm) | 29.10±0.61a | 24.87±1.01ab | 21.33±1.76bc | 21.47±2.23bc | 22.30±4.23b | 17.63±2.86cd | 16.60±2.43d |
地下部鲜重Root fresh weight (g·plant -1) | 1.25±0.22a | 1.07±0.15ab | 0.97±0.11b | 0.88±0.07bc | 0.82±0.11bcd | 0.62±0.22cd | 0.60±0.07d |
地下部干重Root dry weight (g·plant -1) | 0.07±0.01a | 0.06±0.00ab | 0.05±0.01bc | 0.05±0.00bcd | 0.05±0.01cde | 0.04±0.01e | 0.04±0.01de |
根冠比Root/shoot | 0.37±0.04d | 0.39±0.03cd | 0.41±0.04bcd | 0.44±0.03bc | 0.43±0.05bcd | 0.48±0.04b | 0.68±0.03a |
茎耐受指数Shoot tolerance index (%) | - | 80.78±9.42a | 67.96±6.50b | 59.01±2.29b | 56.79±1.30b | 39.29±8.73c | 30.17±4.56c |
根耐受指数Root tolerance index (%) | - | 84.70±5.12a | 76.38±7.96ab | 70.19±2.58abc | 66.09±8.02bcd | 51.73±14.86d | 56.17±9.25cd |
Table 1 Effect of different Cd treatment on the growth and tolerance index of maize seedlings (mean±SD)
生长指标Growth index | Cd0 | Cd5 | Cd10 | Cd25 | Cd50 | Cd100 | Cd200 |
---|---|---|---|---|---|---|---|
株高Plant height (cm) | 35.73±1.72a | 33.73±1.76b | 30.33±0.80c | 28.07±0.58d | 25.17±0.40e | 20.10±1.14f | 16.87±0.80g |
地上部鲜重Shoot fresh weight (g·plant-1) | 2.52±0.12a | 1.94±0.30b | 1.62±0.17c | 1.42±0.08cd | 1.30±0.05d | 0.80±0.13e | 0.48±0.10f |
地上部干重Shoot dry weight (g·plant -1) | 0.19±0.01a | 0.16±0.02b | 0.13±0.01c | 0.11±0.00cd | 0.11±0.00d | 0.08±0.02e | 0.06±0.01e |
主根长Main root length (cm) | 29.10±0.61a | 24.87±1.01ab | 21.33±1.76bc | 21.47±2.23bc | 22.30±4.23b | 17.63±2.86cd | 16.60±2.43d |
地下部鲜重Root fresh weight (g·plant -1) | 1.25±0.22a | 1.07±0.15ab | 0.97±0.11b | 0.88±0.07bc | 0.82±0.11bcd | 0.62±0.22cd | 0.60±0.07d |
地下部干重Root dry weight (g·plant -1) | 0.07±0.01a | 0.06±0.00ab | 0.05±0.01bc | 0.05±0.00bcd | 0.05±0.01cde | 0.04±0.01e | 0.04±0.01de |
根冠比Root/shoot | 0.37±0.04d | 0.39±0.03cd | 0.41±0.04bcd | 0.44±0.03bc | 0.43±0.05bcd | 0.48±0.04b | 0.68±0.03a |
茎耐受指数Shoot tolerance index (%) | - | 80.78±9.42a | 67.96±6.50b | 59.01±2.29b | 56.79±1.30b | 39.29±8.73c | 30.17±4.56c |
根耐受指数Root tolerance index (%) | - | 84.70±5.12a | 76.38±7.96ab | 70.19±2.58abc | 66.09±8.02bcd | 51.73±14.86d | 56.17±9.25cd |
级别Class | Cd0 | Cd5 | Cd10 | Cd25 | Cd50 | Cd100 | Cd200 |
---|---|---|---|---|---|---|---|
RL (cm) | 791.90±85.86a | 481.32±84.38b | 399.81±88.06bc | 371.08±59.95bc | 308.53±51.62c | 146.42±50.80d | 176.85±42.44d |
Ⅰ | 633.01±99.29a | 352.56±72.79b | 292.99±81.91b | 272.78±52.61b | 239.58±38.64b | 92.28±43.64c | 123.07±46.92c |
Ⅱ | 136.22±9.90a | 113.27±13.51b | 88.40±5.58c | 86.84±6.27c | 51.87±10.50d | 44.24±5.65d | 40.78±8.14d |
Ⅲ | 14.38±2.20a | 9.69±1.41bc | 12.01±0.07ab | 7.48±1.49cd | 9.48±2.13bc | 5.90±3.15d | 7.88±0.59cd |
Ⅳ | 4.63±3.36a | 3.42±2.12a | 3.47±0.91a | 1.98±0.81a | 4.72±1.71a | 1.77±1.07a | 2.71±0.49a |
Ⅴ | 1.01±1.23a | 0.50±0.28a | 0.85±0.28a | 0.75±0.59a | 0.85±0.35a | 0.21±0.28a | 0.70±0.23a |
Ⅵ | 0.85±1.27a | 0.46±0.40a | 0.58±0.46a | 0.26±0.20a | 0.65±0.30a | 0.43±0.38a | 0.46±0.24a |
Ⅶ | 0.65±0.80a | 0.63±0.28a | 0.27±0.23a | 0.07±0.07a | 0.54±0.66a | 0.26±0.46a | 0.37±0.07a |
Ⅷ | 0.20±0.22a | 0.30±0.29a | 0.12±0.02a | 0.18±0.10a | 0.09±0.13a | 0.35±0.12a | 0.27±0.01a |
Ⅸ | 0.39±0.29a | 0.09±0.15a | 0.22±0.19a | 0.08±0.14a | 0.19±0.16a | 0.29±0.21a | 0.13±0.22a |
Ⅹ | 0.47±0.34a | 0.38±0.29a | 0.81±0.32a | 0.61±0.45a | 0.49±0.31a | 0.69±0.54a | 0.46±0.15a |
SA (cm2) | 84.37±4.36a | 58.98±7.26b | 50.69±9.18bc | 44.19±5.84c | 40.72±8.42c | 24.91±8.48d | 27.37±4.08d |
Ⅰ | 34.65±5.71a | 20.61±4.07b | 16.15±5.57bc | 15.86±3.95bc | 15.69±3.13bc | 7.30±3.59d | 8.77±4.49cd |
Ⅱ | 29.31±2.06a | 24.88±3.34b | 20.11±1.79c | 17.86±0.81c | 12.02±2.69d | 9.57±1.35d | 8.90±1.10d |
Ⅲ | 5.38±0.80a | 3.67±0.56bc | 4.50±0.05ab | 2.82±0.56cd | 3.54±0.81bcd | 2.27±1.20d | 3.00±0.26cd |
Ⅳ | 2.48±1.84a | 1.84±1.18a | 1.86±0.52a | 1.07±0.42a | 2.54±0.89a | 0.94±0.58a | 1.44±0.26a |
Ⅴ | 0.71±0.87a | 0.34±0.19a | 0.59±0.20a | 0.53±0.41a | 0.59±0.25a | 0.15±0.20a | 0.50±0.16a |
Ⅵ | 0.73±1.09a | 0.39±0.34a | 0.48±0.38a | 0.23±0.17a | 0.56±0.28a | 0.37±0.33a | 0.39±0.20a |
Ⅶ | 0.67±0.83a | 0.67±0.28a | 0.26±0.23a | 0.07±0.07a | 0.53±0.66a | 0.27±0.47a | 0.38±0.08a |
Ⅷ | 0.23±0.25a | 0.34±0.34a | 0.15±0.02a | 0.25±0.08a | 0.11±0.15a | 0.43±0.13a | 0.32±0.01a |
Ⅸ | 0.53±0.41a | 0.11±0.19a | 0.29±0.26a | 0.11±0.18a | 0.25±0.22a | 0.37±0.29a | 0.17±0.29a |
Ⅹ | 0.83±0.56a | 0.71±0.53a | 1.42±0.66a | 1.15±0.88a | 0.79±0.44a | 1.16±0.99a | 0.84±0.23a |
RV (cm3) | 0.72±0.08a | 0.58±0.04b | 0.51±0.07bc | 0.42±0.05cd | 0.43±0.11cd | 0.34±0.11d | 0.34±0.04d |
Ⅰ | 0.19±0.04a | 0.12±0.02b | 0.09±0.03bc | 0.09±0.03bc | 0.10±0.02bc | 0.06±0.03c | 0.06±0.04c |
Ⅱ | 0.52±0.04a | 0.45±0.07a | 0.37±0.04b | 0.30±0.01c | 0.23±0.05cd | 0.17±0.03d | 0.16±0.01d |
Ⅲ | 0.16±0.02a | 0.11±0.02bc | 0.14±0.00ab | 0.09±0.02cd | 0.11±0.02bcd | 0.07±0.04d | 0.09±0.01cd |
Ⅳ | 0.11±0.08a | 0.08±0.05a | 0.08±0.02a | 0.05±0.02a | 0.11±0.04a | 0.04±0.03a | 0.06±0.01a |
Ⅴ | 0.04±0.05a | 0.02±0.01a | 0.03±0.01a | 0.03±0.02a | 0.03±0.01a | 0.01±0.01a | 0.03±0.01a |
Ⅵ | 0.05±0.07a | 0.03±0.02a | 0.03±0.02a | 0.02±0.01a | 0.04±0.02a | 0.03±0.02a | 0.03±0.01a |
Ⅶ | 0.06±0.07a | 0.06±0.02a | 0.02±0.02a | 0.01±0.01a | 0.04±0.05a | 0.02±0.04a | 0.03±0.01a |
Ⅷ | 0.02±0.02a | 0.03±0.03a | 0.01±0.00a | 0.02±0.01a | 0.01±0.01a | 0.04±0.01a | 0.03±0.00a |
Ⅸ | 0.06±0.05a | 0.01±0.02a | 0.03±0.03a | 0.01±0.02a | 0.03±0.02a | 0.04±0.03a | 0.02±0.03a |
Ⅹ | 0.12±0.08a | 0.10±0.08a | 0.18±0.10a | 0.18±0.15a | 0.10±0.05a | 0.16±0.14a | 0.12±0.03a |
RD (mm) | 0.34±0.03c | 0.39±0.02bc | 0.41±0.02b | 0.38±0.02bc | 0.42±0.03b | 0.54±0.01a | 0.50±0.06a |
RF | 2761.00±223.55a | 1328.67±117.73b | 1259.00±385.32b | 999.67±208.20b | 1108.33±220.65b | 424.67±204.81c | 571.00±217.42c |
RT | 1511.00±146.73a | 808.33±161.33b | 683.33±36.83b | 693.33±79.22b | 362.33±73.66c | 278.00±98.66c | 287.00±16.64c |
Table 2 Influence of Cd treatments with different concentrations on root structure and root classification of maize (mean±SD)
级别Class | Cd0 | Cd5 | Cd10 | Cd25 | Cd50 | Cd100 | Cd200 |
---|---|---|---|---|---|---|---|
RL (cm) | 791.90±85.86a | 481.32±84.38b | 399.81±88.06bc | 371.08±59.95bc | 308.53±51.62c | 146.42±50.80d | 176.85±42.44d |
Ⅰ | 633.01±99.29a | 352.56±72.79b | 292.99±81.91b | 272.78±52.61b | 239.58±38.64b | 92.28±43.64c | 123.07±46.92c |
Ⅱ | 136.22±9.90a | 113.27±13.51b | 88.40±5.58c | 86.84±6.27c | 51.87±10.50d | 44.24±5.65d | 40.78±8.14d |
Ⅲ | 14.38±2.20a | 9.69±1.41bc | 12.01±0.07ab | 7.48±1.49cd | 9.48±2.13bc | 5.90±3.15d | 7.88±0.59cd |
Ⅳ | 4.63±3.36a | 3.42±2.12a | 3.47±0.91a | 1.98±0.81a | 4.72±1.71a | 1.77±1.07a | 2.71±0.49a |
Ⅴ | 1.01±1.23a | 0.50±0.28a | 0.85±0.28a | 0.75±0.59a | 0.85±0.35a | 0.21±0.28a | 0.70±0.23a |
Ⅵ | 0.85±1.27a | 0.46±0.40a | 0.58±0.46a | 0.26±0.20a | 0.65±0.30a | 0.43±0.38a | 0.46±0.24a |
Ⅶ | 0.65±0.80a | 0.63±0.28a | 0.27±0.23a | 0.07±0.07a | 0.54±0.66a | 0.26±0.46a | 0.37±0.07a |
Ⅷ | 0.20±0.22a | 0.30±0.29a | 0.12±0.02a | 0.18±0.10a | 0.09±0.13a | 0.35±0.12a | 0.27±0.01a |
Ⅸ | 0.39±0.29a | 0.09±0.15a | 0.22±0.19a | 0.08±0.14a | 0.19±0.16a | 0.29±0.21a | 0.13±0.22a |
Ⅹ | 0.47±0.34a | 0.38±0.29a | 0.81±0.32a | 0.61±0.45a | 0.49±0.31a | 0.69±0.54a | 0.46±0.15a |
SA (cm2) | 84.37±4.36a | 58.98±7.26b | 50.69±9.18bc | 44.19±5.84c | 40.72±8.42c | 24.91±8.48d | 27.37±4.08d |
Ⅰ | 34.65±5.71a | 20.61±4.07b | 16.15±5.57bc | 15.86±3.95bc | 15.69±3.13bc | 7.30±3.59d | 8.77±4.49cd |
Ⅱ | 29.31±2.06a | 24.88±3.34b | 20.11±1.79c | 17.86±0.81c | 12.02±2.69d | 9.57±1.35d | 8.90±1.10d |
Ⅲ | 5.38±0.80a | 3.67±0.56bc | 4.50±0.05ab | 2.82±0.56cd | 3.54±0.81bcd | 2.27±1.20d | 3.00±0.26cd |
Ⅳ | 2.48±1.84a | 1.84±1.18a | 1.86±0.52a | 1.07±0.42a | 2.54±0.89a | 0.94±0.58a | 1.44±0.26a |
Ⅴ | 0.71±0.87a | 0.34±0.19a | 0.59±0.20a | 0.53±0.41a | 0.59±0.25a | 0.15±0.20a | 0.50±0.16a |
Ⅵ | 0.73±1.09a | 0.39±0.34a | 0.48±0.38a | 0.23±0.17a | 0.56±0.28a | 0.37±0.33a | 0.39±0.20a |
Ⅶ | 0.67±0.83a | 0.67±0.28a | 0.26±0.23a | 0.07±0.07a | 0.53±0.66a | 0.27±0.47a | 0.38±0.08a |
Ⅷ | 0.23±0.25a | 0.34±0.34a | 0.15±0.02a | 0.25±0.08a | 0.11±0.15a | 0.43±0.13a | 0.32±0.01a |
Ⅸ | 0.53±0.41a | 0.11±0.19a | 0.29±0.26a | 0.11±0.18a | 0.25±0.22a | 0.37±0.29a | 0.17±0.29a |
Ⅹ | 0.83±0.56a | 0.71±0.53a | 1.42±0.66a | 1.15±0.88a | 0.79±0.44a | 1.16±0.99a | 0.84±0.23a |
RV (cm3) | 0.72±0.08a | 0.58±0.04b | 0.51±0.07bc | 0.42±0.05cd | 0.43±0.11cd | 0.34±0.11d | 0.34±0.04d |
Ⅰ | 0.19±0.04a | 0.12±0.02b | 0.09±0.03bc | 0.09±0.03bc | 0.10±0.02bc | 0.06±0.03c | 0.06±0.04c |
Ⅱ | 0.52±0.04a | 0.45±0.07a | 0.37±0.04b | 0.30±0.01c | 0.23±0.05cd | 0.17±0.03d | 0.16±0.01d |
Ⅲ | 0.16±0.02a | 0.11±0.02bc | 0.14±0.00ab | 0.09±0.02cd | 0.11±0.02bcd | 0.07±0.04d | 0.09±0.01cd |
Ⅳ | 0.11±0.08a | 0.08±0.05a | 0.08±0.02a | 0.05±0.02a | 0.11±0.04a | 0.04±0.03a | 0.06±0.01a |
Ⅴ | 0.04±0.05a | 0.02±0.01a | 0.03±0.01a | 0.03±0.02a | 0.03±0.01a | 0.01±0.01a | 0.03±0.01a |
Ⅵ | 0.05±0.07a | 0.03±0.02a | 0.03±0.02a | 0.02±0.01a | 0.04±0.02a | 0.03±0.02a | 0.03±0.01a |
Ⅶ | 0.06±0.07a | 0.06±0.02a | 0.02±0.02a | 0.01±0.01a | 0.04±0.05a | 0.02±0.04a | 0.03±0.01a |
Ⅷ | 0.02±0.02a | 0.03±0.03a | 0.01±0.00a | 0.02±0.01a | 0.01±0.01a | 0.04±0.01a | 0.03±0.00a |
Ⅸ | 0.06±0.05a | 0.01±0.02a | 0.03±0.03a | 0.01±0.02a | 0.03±0.02a | 0.04±0.03a | 0.02±0.03a |
Ⅹ | 0.12±0.08a | 0.10±0.08a | 0.18±0.10a | 0.18±0.15a | 0.10±0.05a | 0.16±0.14a | 0.12±0.03a |
RD (mm) | 0.34±0.03c | 0.39±0.02bc | 0.41±0.02b | 0.38±0.02bc | 0.42±0.03b | 0.54±0.01a | 0.50±0.06a |
RF | 2761.00±223.55a | 1328.67±117.73b | 1259.00±385.32b | 999.67±208.20b | 1108.33±220.65b | 424.67±204.81c | 571.00±217.42c |
RT | 1511.00±146.73a | 808.33±161.33b | 683.33±36.83b | 693.33±79.22b | 362.33±73.66c | 278.00±98.66c | 287.00±16.64c |
Fig.3 Effects of different concentrations of Cd treatment on Cd concentration, Cd accumulation and Cd translocation factors of maize seedling tissueDifferent lowercase letters represent that the difference among different cadmium treatments has reached a significant level (P<0.05), ND means no Cd was detected, the same below.
部位 Part | Vmax (μg·g-1·h-1) | 米氏常数Km (μmol·L-1) | 吸收能力 α | R2 |
---|---|---|---|---|
地上部 Shoot | 796.1 | 63.25 | 12.59 | 0.9469 |
地下部 Root | 1062.0 | 9.42 | 112.69 | 0.9417 |
Table 3 Michaelis-Menten equation constants of Cd uptake by maize seedlings at different concentrations in growth medium
部位 Part | Vmax (μg·g-1·h-1) | 米氏常数Km (μmol·L-1) | 吸收能力 α | R2 |
---|---|---|---|---|
地上部 Shoot | 796.1 | 63.25 | 12.59 | 0.9469 |
地下部 Root | 1062.0 | 9.42 | 112.69 | 0.9417 |
1 | Ministry of Environmental Protection, Ministry of Land and Resources. Report on the national general survey of soil contamination. Environmental Education, 2014(6): 8-10. |
环境保护部, 国土资源部. 全国土壤污染状况调查公报. 环境教育, 2014(6): 8-10. | |
2 | Fu Y C, Zhu X L, Yuan C, et al. Cadmium absorption and enrichment in wheat and its cadmium pollution prediction: Research progress. Chinese Agricultural Science Bulletin, 2020, 36(6): 37-41. |
符云聪, 朱晓龙, 袁毳, 等. 小麦对镉的吸收、富集及其镉污染预测研究进展. 中国农学通报, 2020, 36(6): 37-41. | |
3 | Chen J J, Yu W, Zu Y Q, et al. Variety difference of Cd accumulation and translocation in Zea mays. Ecology and Environmental Sciences, 2014, 23(10): 1671-1676. |
陈建军, 于蔚, 祖艳群, 等. 玉米(Zea mays)对镉积累与转运的品种差异研究. 生态环境学报, 2014, 23(10): 1671-1676. | |
4 | Deng T, Lu W S, Wu J L, et al. Differences of soil cadmium accumulation and translocation in different maize varieties. Journal of South China Agricultural University, 2019, 40(4): 33-39. |
邓婷, 卢维盛, 吴家龙, 等. 不同玉米品种对土壤镉富集和转运的差异研究. 华南农业大学学报, 2019, 40(4): 33-39. | |
5 | Sun J H, Chen T T, Qiu B, et al. Research on the distribution of heavy metal in corn plants. Crop Research, 2016, 30(4): 402-405. |
孙姣辉, 陈婷婷, 邱博, 等. 几种重金属(Cd、Cr、As)在玉米植株中的分布研究. 作物研究, 2016, 30(4): 402-405. | |
6 | Yuan L, Liu Y, Lan Y S, et al. Variations of cadmium absorption and accumulation among corn cultivars of metal pollution in soil from lead-zinc mining area. Journal of Sichuan Agricultural University, 2018, 36(1): 22-27. |
袁林, 刘颖, 兰玉书, 等. 不同玉米品种对镉吸收累积特性研究. 四川农业大学学报, 2018, 36(1): 22-27. | |
7 | Potters G, Pasternak T P, Guisez Y, et al. Stress-induced morphogenic responses: Growing out of trouble? Trends in Plant Science, 2007, 12(3): 98-105. |
8 | Shi G, Xia S, Ye J, et al. PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology. Environmental and Experimental Botany, 2015, 111(3): 127-134. |
9 | Gunsé B, Llugany M, Ch P, et al. Growth, cell wall elasticity and plasticity in Zea mays L. coleoptiles exposed to cadmium. Suelo y Planta, 1992, 2: 179-188. |
10 | Qv D Y, Zhang L G, Gu W R, et al. Effects of chitosan on root growth and leaf photosynthesis of maize seedlings under cadmium stress. Chinese Journal of Ecology, 2017, 36(5): 1300-1309. |
曲丹阳, 张立国, 顾万荣, 等. 壳聚糖对镉胁迫下玉米幼苗根系生长及叶片光合的影响. 生态学杂志, 2017, 36(5): 1300-1309. | |
11 | He J Y, Wang Y Y, Ren Y F, et al. Effect of cadmium on root morphology and physiological characteristics of rice seedlings. Ecology and Environmental Sciences, 2009, 18(5): 1863-1868. |
何俊瑜, 王阳阳, 任艳芳, 等. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响. 生态环境学报, 2009, 18(5): 1863-1868. | |
12 | Arditti J, Dunn A. Environmental plant physiology: Experiments in cellular and plant physiology. New York: Holt. Rinehart and Winston Inc, 1969. |
13 | Wang Y P, Chang H, Li C, et al. Effects of exogenous Ca2+ on growth, photosynthetic charateristics and photosystem Ⅱ function of maize seedings under cadmium stress. Acta Prataculturae Sinica, 2016, 25(5): 40-48. |
王玉萍, 常宏, 李成, 等. Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响. 草业学报, 2016, 25(5): 40-48. | |
14 | Li Y, Yu L J, Jin X X. Mechanism of heavy metal tolerance stress of plants. China Biotechnology, 2015, 35(9): 94-104. |
李洋, 于丽杰, 金晓霞. 植物重金属胁迫耐受机制. 中国生物工程杂志, 2015, 35(9): 94-104. | |
15 | Yang C G, Dou H, Liang Y C, et al. Influence of silicon on cadmium availability and cadmium uptake by maize in cadmium-contaminated soil. Scientia Agricultura Sinica, 2005, 38(1): 116-121. |
杨超光, 豆虎, 梁永超, 等. 硅对土壤外源镉活性和玉米吸收镉的影响. 中国农业科学, 2005, 38(1): 116-121. | |
16 | Wang H, Zhao S C, Xia W J, et al. Effect of cadmium stress on photosynthesis, lipid peroxidation and antioxidant enzyme activities in maize (Zea mays L.) seedlings. Plant Nutrition and Fertilizer Science, 2008(1): 36-42. |
汪洪, 赵士诚, 夏文建, 等.不同浓度镉胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响. 植物营养与肥料学报, 2008(1): 36-42. | |
17 | Wu Z C, Zhao X H, Sun X C, et al. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere, 2015, 138(11): 526-536. |
18 | Kim T H, Böhmer M, Hu H, et al. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 2010, 61: 561-591. |
19 | Liu D L, Sun Q X, Shao J, et al. Effects of Cd concentrations on growth, photosynthetic indices and bioconcentration of two Pennisetum during different growth stages. Pratacultural Science, 2017, 34(1): 84-93. |
刘大林, 孙启鑫, 邵将, 等. 镉胁迫对两种狼尾草不同生育时期生长性能、光合作用特征及镉吸收转运差异的影响. 草业科学, 2017, 34(1): 84-93. | |
20 | Tian Y, Zhang H H, Meng X Y, et al. Effects of arbuscular mycorrhizal fungi (Glomus mosseae) on growth and photosynthesis characteristics of Lolium perenne L. under Cd contaminated soil. Acta Agrestia Sinica, 2013, 21(1): 135-141. |
田野, 张会慧, 孟祥英, 等. 镉(Cd)污染土壤接种丛枝菌根真菌(Glomus mosseae)对黑麦草生长和光合的影响. 草地学报, 2013, 21(1): 135-141. | |
21 | Qian L X, Hu C X, Zhao X H, et al. Effects of cadmium stress on nitrogen metabolism and photosynthesis of different Chinese cabbages. Journal of Huazhong Agricultural University, 2015, 34(3): 69-75. |
钱雷晓, 胡承孝, 赵小虎, 等. 镉胁迫对不同基因型小白菜氮代谢和光合作用的影响. 华中农业大学学报, 2015, 34(3): 69-75. | |
22 | Singh S, Singh V P, Prasad S M, et al. Interactive effect of silicon (Si) and salicylic acid (SA) in maize seedlings and their mechanisms of cadmium (Cd) toxicity alleviation. Journal of Plant Growth Regulation, 2019, 38(4): 1587-1597. |
23 | Bhaduri A M, Fulekar M H. Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio-Technology, 2012, 11(1): 55-69. |
24 | Vaculík M, Pavlovič A, Lux A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicology and Environmental Safety, 2015, 120(10): 66-73. |
25 | Wang F, Chang P P, Chen Y P, et al. Effect of exogenous nitric oxide on seedings growth and physiological characteristics of maize seedings under cadmium stress. Acta Prataculturae Sinica, 2013, 22(2): 178-186. |
王芳, 常盼盼, 陈永平, 等. 外源NO对镉胁迫下玉米幼苗生长和生理特性的影响. 草业学报, 2013, 22(2): 178-186. | |
26 | Faller P, Kienzler K, Krieger-Liszkay A. Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of photosystem Ⅱ by competitive binding to the essential Ca2+ site. Biochimica Et Biophysica Acta-Bioenergetics, 2005, 1706(1/2): 158-164. |
27 | Li J W, Yue F X, Wang Y F, et al. Effects of biochar amendment and arbuscular mycorrhizal inoculation on maize growth and physiological biochemistry under cadmium stress. Acta Prataculturae Sinica, 2018, 27(5): 120-129. |
李继伟, 悦飞雪, 王艳芳,等. 施用生物炭和AM真菌对镉胁迫下玉米生长和生理生化指标的影响. 草业学报, 2018, 27(5): 120-129. | |
28 | Zhang J B, Huang W N. Effect of cadmium stress on photosynthetic functions of strawberry. Chinese Journal of Applied Ecology, 2007, 18(7): 1673-1676. |
张金彪, 黄维南. 镉胁迫对草莓光合的影响. 应用生态学报, 2007, 18(7): 1673-1676. | |
29 | Liu J X, Ou X B, Wang J C. Physiological-ecological responses of naked oat to cadmium (Cd) stress and Cd accumulation. Journal of Triticeae Crops, 2019, 39(5): 621-629. |
刘建新, 欧晓彬, 王金成. 裸燕麦对重金属镉(Cd)胁迫的生理生态响应及Cd累积特性. 麦类作物学报, 2019, 39(5): 621-629. | |
30 | Yu Z H, Li S B, Zhao X L, et al. Differences in root morphology, rhizosheath traits, and Cd uptake in maize cultivars. Journal of Agro-Environment Science, 2021, 40(4): 747-755. |
于子昊, 李胜宝, 赵晓玲, 等. 玉米根系、根鞘性状与镉吸收的品种差异研究. 农业环境科学学报, 2021, 40(4): 747-755. | |
31 | Li X M, Song G L. Cadmium uptake and root morphological changes in Medicago sativa under cadmium stress. Acta Prataculturae Sinica, 2016, 25(2): 178-186. |
李希铭, 宋桂龙. 镉胁迫对紫花苜蓿镉吸收特征及根系形态影响. 草业学报, 2016, 25(2): 178-186. | |
32 | Qin T C, Wu Y S, Wang H X, et al. Effect of cadmium, lead and their interactions on the physiological and ecological characteristics of root system of Brassica chinensis. Acta Ecologica Sinica, 1998, 18(3): 320-325. |
秦天才, 吴玉树, 王焕校, 等. 镉、铅及其相互作用对小白菜根系生理生态效应的研究. 生态学报, 1998, 18(3): 320-325. | |
33 | Xiao Y T, Wu H Q, Li Z Y, et al. Difference of cadmium accumulation by different genotypes of winter wheat and its relationship with root morphology. Journal of Soil and Water Conservation, 2015, 29(6): 276-280, 286. |
肖亚涛, 吴海卿, 李中阳, 等. 不同基因型冬小麦镉累积差异及其与根系形态的关系. 水土保持学报, 2015, 29(6): 276-280, 286. | |
34 | Yu R G, Xia S L, Liu C F, et al. Variations in root morphology among 18 herbaceous species and their relationship with cadmium accumulation. Environmental Science and Pollution Research, 2017, 24(5): 4731-4740. |
35 | Guo J M, Guo Y, Yang J, et al. Effects and interactions of cadmium and zinc on root morphology and metal translocation in two populations of Hylotelephium spectabile (Boreau) H. Ohba, a potential Cd-accumulating species. Environmental Science and Pollution Research, 2020, 27(17): 21364-21375. |
[1] | Xin-ming WU, Zhi-hong FANG, Hui-wu CHI, Hui-li JIA, Jian-ning LIU, Yong-hong SHI, Xue-min WANG. Comparison of 30 maize (Zea mays) varieties for food and feed in the Yanmenguan area [J]. Acta Prataculturae Sinica, 2022, 31(1): 205-216. |
[2] | Li-qin HUANG, Song-qiao LI, Zhen-zhong YUAN, Jing TANG, Jing-cai YAN, Qi-yuan TANG. Effects of feeding co-fermented whole plant rice and spent mushroom (Pleurotus ostreatus) substrate on slaughter performance, meat quality and organ size indexes of Liuyang black goats [J]. Acta Prataculturae Sinica, 2021, 30(6): 133-140. |
[3] | He-xing QI, Guang-xin LU, Zong-ren LI, Cheng-ti XU, Ke-jia DE, Xiao-juan ZHOU, Ying-cheng WANG, Gui-hua MA. Identification and pathogenicity of Alternaria leaf blight strains in silage maize in Qinghai Province [J]. Acta Prataculturae Sinica, 2021, 30(6): 94-105. |
[4] | Xiong-xiong LI, Ting JIAO, Sheng-guo ZHAO, Wei-na QIN, Xue-mei GAO, Zheng-wen WANG, Jian-ping WU, Zhao-min LEI. Synergistic effect of oregano essential oil and organic cobalt on degradation characteristics of silage maize stalks and rumen fermentation of sheep [J]. Acta Prataculturae Sinica, 2021, 30(11): 191-202. |
[5] | Zhen-song LI, Li-qiang WAN, Shuo LI, Xiang-lin LI. Response of alfalfa root architecture and physiological characteristics to drought and rehydration [J]. Acta Prataculturae Sinica, 2021, 30(1): 189-196. |
[6] | Jia-meng GUO, Ling-zhi HE, Dong-liang YAN, Zhuo LI, Yong-chao WANG, Rui-xin SHAO, Qing-hua YANG. Effects of controlled release nitrogen and urea ratio on nitrogen accumulation, transfer, and nitrogen-use efficiency of different summer maize varieties [J]. Acta Prataculturae Sinica, 2021, 30(1): 81-95. |
[7] | Peng QI, Xiao-jiao WANG, Yi-ming YAO, Xiao-long CHEN, Jun WU, Li-qun CAI. Effects of different tillage practices and nitrogen application rate on carbon dioxide emissions and carbon balance in rain-fed maize crops [J]. Acta Prataculturae Sinica, 2021, 30(1): 96-106. |
[8] | LEI En, SHAO Di, ZHU Tian-biao, SHU Xing, YANG Yong-bing, WANG Yue-dong, TANG Qi-yuan. Role of grain crushing resistance and grain threshing characteristics in determining suitability of feed maize cultivars for machine harvesting and effect of plant moisture content [J]. Acta Prataculturae Sinica, 2020, 29(9): 125-135. |
[9] | LÜ Han-qiang, YU Ai-zhong, WANG Yu-long, SU Xiang-xiang, LÜ Yi-tong, CHAI Qiang. Effect of green manure retention practices on nitrogen absorption and utilization by maize crops in the arid oasis irrigation area [J]. Acta Prataculturae Sinica, 2020, 29(8): 93-103. |
[10] | DING Yong-fu, WANG Ji-liang, CHEN Fen-qi, ZHUANG Ze-long, BAI Ming-xing, LU Yan-tian, JIN Bing-bing, PENG Yun-ling. Correlation between SSR diversity and ear traits of maize inbred lines [J]. Acta Prataculturae Sinica, 2020, 29(7): 143-153. |
[11] | HU Yue-qiu, XU Kai-wei, LONG Ling, JIANG Fan, ZHOU Yuan, QIU Chuan-zhi, LI Jian-bing, CHEN Yuan-xue. Effect of high plant density on yield of maize variety ‘Zhenghong No. 6' [J]. Acta Prataculturae Sinica, 2020, 29(7): 154-162. |
[12] | WANG Yong-chao, ZHANG Ying-lei, YAN Dong-liang, HE Ling-zhi, LI Zhuo, YAN Bo-wen, SHAO Rui-xin, GUO Jia-meng, YANG Qing-hua. Physiological role of γ-aminobutyric acid in protecting the photosynthetic system of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 191-203. |
[13] | YAN Xu, WU Zi-zhou, LI Ying-zheng, LI Xiao-feng, HE Ru-yu, YANG Chun-yan, LI Yang, ZHOU Yang, SHI Jian-zhong, EBENEZER Kofi Sam, HE Jian-mei, RONG Ting-zhao, TANG Qi-lin. Unlocking the potential of nodal propagation by raising plantlets from the longer stem segments of perennial forage maize at the tasseling stage [J]. Acta Prataculturae Sinica, 2020, 29(6): 204-213. |
[14] | KANG Cai-rui, XIE Jun-hong, LI Ling-ling, WANG Jia-nan, GUO Xi-jun, PENG Zheng-kai, WANG Jin-bin, Setor kwami Fudjoe, WANG Lin-lin. Effects of planting density and nitrogen fertilizer rate on maize yield and photosynthetic characteristics in arid areas of central Gansu, China [J]. Acta Prataculturae Sinica, 2020, 29(5): 141-149. |
[15] | ZHANG Xue-ting, WANG Xin-yong, YANG Wen-xiong, LIU Na, YANG Chang-gang. Evaluation of water-saving and drought-resistant maize varieties in the Hexi oasis irrigation corridor [J]. Acta Prataculturae Sinica, 2020, 29(2): 134-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||