Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (7): 220-233.DOI: 10.11686/cyxb2021229
Wen-hui XIE(), Li-juan HUANG, Li-li ZHAO(), Lei-ting WANG, Wen-wu ZHAO
Received:
2021-06-09
Revised:
2021-07-27
Online:
2022-07-20
Published:
2022-06-01
Contact:
Li-li ZHAO
Wen-hui XIE, Li-juan HUANG, Li-li ZHAO, Lei-ting WANG, Wen-wu ZHAO. Effects of calcium salt stress on seed germination and seedling physiological characteristics of three Pueraria lobata germplasm lines[J]. Acta Prataculturae Sinica, 2022, 31(7): 220-233.
种质材料代号Germplasm material code | 产地Place of origin | 来源Source |
---|---|---|
AUS | 澳大利亚Australia | 江苏冈仁波齐种业有限公司Jiangsu Gangrenboqi seed Co. , Ltd. |
HN | 湖南 Hunan | 湖南种子市场Hunan seed market |
JS | 江苏Jiangsu | 江苏种业科技有限公司Jiangsu seed technology Co., Ltd |
Table 1 Resource information of the three P. lobata germplasms
种质材料代号Germplasm material code | 产地Place of origin | 来源Source |
---|---|---|
AUS | 澳大利亚Australia | 江苏冈仁波齐种业有限公司Jiangsu Gangrenboqi seed Co. , Ltd. |
HN | 湖南 Hunan | 湖南种子市场Hunan seed market |
JS | 江苏Jiangsu | 江苏种业科技有限公司Jiangsu seed technology Co., Ltd |
材料 Materials | CaCl2浓度 Concentration of CaCl2 (mmol·L-1) | 叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 株高 Plant height (cm) | 地上部干重 Aboveground dry weight (g·plant-1) | 地下部干重 Underground dry weight (g·plant-1) |
---|---|---|---|---|---|---|
AUS | 0 (CK) | 6.33±0.24Aa | 5.18±0.20Aa | 16.23±0.59Aa | 0.50±0.0031Aa | 0.03±0.0033Aa |
50 | 5.61±0.66Aa | 4.74±0.24Aab | 14.72±1.12Aab | 0.47±0.0200Aa | 0.03±0.0031Aab | |
100 | 4.46±0.24Bb | 4.46±0.24Bab | 14.08±1.04Ab | 0.37±0.0201Ab | 0.02±0.0033Abc | |
150 | 3.97±0.04Cb | 4.10±0.15Bbc | 13.75±0.14Aab | 0.28±0.0057Ac | 0.02±0.0027Ac | |
200 | 3.68±0.05Cb | 3.18±0.12Bc | 8.50±0.31Ac | 0.27±0.0119Ac | 0.02±0.0020Ac | |
HN | 0 (CK) | 6.55±0.30Aa | 5.54±0.05Aa | 15.72±0.64Aa | 0.45±0.0067Ba | 0.03±0.0032Aa |
50 | 6.35±0.28Aa | 5.27±0.17Aa | 14.17±0.45Ab | 0.40±0.0033Bab | 0.03±0.0033Aa | |
100 | 6.91±0.12Aa | 5.41±0.09Aa | 13.93±0.18Ab | 0.35±0.0125Abc | 0.02±0.0067Aa | |
150 | 6.96±0.13Aa | 4.82±0.07Ab | 11.67±0.09Bc | 0.31±0.0426Ac | 0.02±0.0034Aab | |
200 | 5.16±0.02Ab | 3.24±0.10Bb | 10.55±0.25Ac | 0.25±0.0239Ad | 0.01±0.0036Bb | |
JS | 0 (CK) | 5.88±0.24Aa | 4.68±0.01Ba | 15.48±0.44Aa | 0.44±0.0100Ba | 0.03±0.0088Aab |
50 | 5.28±0.12Aab | 4.75±0.12Aa | 14.48±0.17Aa | 0.42±0.0067Ba | 0.03±0.0056Aa | |
100 | 5.08±0.34Bbc | 4.54±0.30Ba | 13.80±1.50Aa | 0.34±0.0227Ab | 0.03±0.0033Aab | |
150 | 4.51±0.20Bbc | 4.32±0.10Ba | 11.14±0.20Bb | 0.31±0.0337Ab | 0.02±0.0036Ab | |
200 | 4.46±0.21Bc | 3.95±0.09Ab | 10.83±0.33Ab | 0.28±0.0236Ab | 0.02±0.0033Ab |
Table 2 Effects of calcium salt stress on seedling growth indexes of three P. lobata germplasms
材料 Materials | CaCl2浓度 Concentration of CaCl2 (mmol·L-1) | 叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 株高 Plant height (cm) | 地上部干重 Aboveground dry weight (g·plant-1) | 地下部干重 Underground dry weight (g·plant-1) |
---|---|---|---|---|---|---|
AUS | 0 (CK) | 6.33±0.24Aa | 5.18±0.20Aa | 16.23±0.59Aa | 0.50±0.0031Aa | 0.03±0.0033Aa |
50 | 5.61±0.66Aa | 4.74±0.24Aab | 14.72±1.12Aab | 0.47±0.0200Aa | 0.03±0.0031Aab | |
100 | 4.46±0.24Bb | 4.46±0.24Bab | 14.08±1.04Ab | 0.37±0.0201Ab | 0.02±0.0033Abc | |
150 | 3.97±0.04Cb | 4.10±0.15Bbc | 13.75±0.14Aab | 0.28±0.0057Ac | 0.02±0.0027Ac | |
200 | 3.68±0.05Cb | 3.18±0.12Bc | 8.50±0.31Ac | 0.27±0.0119Ac | 0.02±0.0020Ac | |
HN | 0 (CK) | 6.55±0.30Aa | 5.54±0.05Aa | 15.72±0.64Aa | 0.45±0.0067Ba | 0.03±0.0032Aa |
50 | 6.35±0.28Aa | 5.27±0.17Aa | 14.17±0.45Ab | 0.40±0.0033Bab | 0.03±0.0033Aa | |
100 | 6.91±0.12Aa | 5.41±0.09Aa | 13.93±0.18Ab | 0.35±0.0125Abc | 0.02±0.0067Aa | |
150 | 6.96±0.13Aa | 4.82±0.07Ab | 11.67±0.09Bc | 0.31±0.0426Ac | 0.02±0.0034Aab | |
200 | 5.16±0.02Ab | 3.24±0.10Bb | 10.55±0.25Ac | 0.25±0.0239Ad | 0.01±0.0036Bb | |
JS | 0 (CK) | 5.88±0.24Aa | 4.68±0.01Ba | 15.48±0.44Aa | 0.44±0.0100Ba | 0.03±0.0088Aab |
50 | 5.28±0.12Aab | 4.75±0.12Aa | 14.48±0.17Aa | 0.42±0.0067Ba | 0.03±0.0056Aa | |
100 | 5.08±0.34Bbc | 4.54±0.30Ba | 13.80±1.50Aa | 0.34±0.0227Ab | 0.03±0.0033Aab | |
150 | 4.51±0.20Bbc | 4.32±0.10Ba | 11.14±0.20Bb | 0.31±0.0337Ab | 0.02±0.0036Ab | |
200 | 4.46±0.21Bc | 3.95±0.09Ab | 10.83±0.33Ab | 0.28±0.0236Ab | 0.02±0.0033Ab |
Fig.2 Effects of calcium salt stress on relative conductivity, malondialdehyde and osmotic adjustment substance contents of three P. lobata germplasms
Fig.3 Effect of calcium salt stress on the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) in leaves of three kinds of P. lobata germplasms
材料 Materials | CaCl2 浓度 Concentration of CaCl2 (mmol·L-1) | ABA含量 ABA content | IAA含量 IAA content | GA3含量 GA3 content | ZT含量 ZT content |
---|---|---|---|---|---|
AUS | 0 (CK) | 55.84±13.11Ab | 73.76±4.09Aab | 7.51±0.18Ac | 17.70±0.80Bb |
50 | 103.67±10.91Aa | 76.94±4.63Aa | 9.24±0.11Aa | 18.44±0.53Ba | |
100 | 86.32±11.29Aab | 85.08±5.57Aa | 9.65±0.18Aa | 19.61±0.20Aa | |
150 | 76.88±0.76Aab | 62.07±1.89Bb | 8.09±0.24Ab | 17.10±0.14Ac | |
200 | 82.23±8.39Aab | 62.05±0.08Bb | 8.60±0.06Ab | 16.50±0.25Bb | |
HN | 0 (CK) | 53.59±5.14Ac | 66.52±1.89Aab | 6.46±0.02Bc | 16.93±0.23Bb |
50 | 60.08±4.80Bbc | 66.91±4.52Bab | 7.88±0.10Bb | 17.59±0.42Ab | |
100 | 68.68±5.56Aabc | 73.77±6.25Aa | 7.99±0.00Bb | 19.48±0.28Aa | |
150 | 78.46±6.76Aa | 61.19±2.34Bab | 8.64±0.16Aa | 17.71±0.17Bb | |
200 | 72.03±2.41Aab | 58.51±3.57Bb | 7.71±0.10Ab | 16.69±0.32Bb | |
JS | 0 (CK) | 61.78±6.11Ac | 77.33±4.34Aa | 7.53±0.07Ab | 18.54±0.20Aa |
50 | 61.85±2.41Bc | 80.88±0.43Aa | 7.98±0.28Bb | 17.18±0.44Aa | |
100 | 83.89±3.83Aa | 78.20±3.15Aa | 10.22±0.40Aa | 17.71±0.27Aa | |
150 | 79.98±0.48Abc | 73.34±4.43Aa | 8.08±0.07Ab | 16.42±0.06Ab | |
200 | 71.50±2.67Aab | 74.81±3.44Aa | 7.38±0.06Bb | 16.15±0.50Cb |
Table 3 Changes of endogenous hormone contents in leaves of three P. lobata germplasms under calcium salt stress (ng·g-1)
材料 Materials | CaCl2 浓度 Concentration of CaCl2 (mmol·L-1) | ABA含量 ABA content | IAA含量 IAA content | GA3含量 GA3 content | ZT含量 ZT content |
---|---|---|---|---|---|
AUS | 0 (CK) | 55.84±13.11Ab | 73.76±4.09Aab | 7.51±0.18Ac | 17.70±0.80Bb |
50 | 103.67±10.91Aa | 76.94±4.63Aa | 9.24±0.11Aa | 18.44±0.53Ba | |
100 | 86.32±11.29Aab | 85.08±5.57Aa | 9.65±0.18Aa | 19.61±0.20Aa | |
150 | 76.88±0.76Aab | 62.07±1.89Bb | 8.09±0.24Ab | 17.10±0.14Ac | |
200 | 82.23±8.39Aab | 62.05±0.08Bb | 8.60±0.06Ab | 16.50±0.25Bb | |
HN | 0 (CK) | 53.59±5.14Ac | 66.52±1.89Aab | 6.46±0.02Bc | 16.93±0.23Bb |
50 | 60.08±4.80Bbc | 66.91±4.52Bab | 7.88±0.10Bb | 17.59±0.42Ab | |
100 | 68.68±5.56Aabc | 73.77±6.25Aa | 7.99±0.00Bb | 19.48±0.28Aa | |
150 | 78.46±6.76Aa | 61.19±2.34Bab | 8.64±0.16Aa | 17.71±0.17Bb | |
200 | 72.03±2.41Aab | 58.51±3.57Bb | 7.71±0.10Ab | 16.69±0.32Bb | |
JS | 0 (CK) | 61.78±6.11Ac | 77.33±4.34Aa | 7.53±0.07Ab | 18.54±0.20Aa |
50 | 61.85±2.41Bc | 80.88±0.43Aa | 7.98±0.28Bb | 17.18±0.44Aa | |
100 | 83.89±3.83Aa | 78.20±3.15Aa | 10.22±0.40Aa | 17.71±0.27Aa | |
150 | 79.98±0.48Abc | 73.34±4.43Aa | 8.08±0.07Ab | 16.42±0.06Ab | |
200 | 71.50±2.67Aab | 74.81±3.44Aa | 7.38±0.06Bb | 16.15±0.50Cb |
材料 Materials | 主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution(%) | 累积贡献率 Cumulative(%) |
---|---|---|---|---|
AUS | Ⅰ | 15.008 | 71.468 | 71.468 |
Ⅱ | 4.137 | 19.699 | 91.167 | |
HN | Ⅰ | 12.585 | 59.931 | 59.931 |
Ⅱ | 7.199 | 34.281 | 94.212 | |
JS | Ⅰ | 14.192 | 67.583 | 67.583 |
Ⅱ | 4.917 | 23.413 | 90.996 |
Table 4 Eigenvalue and contribution of salt tolerance index of three kinds of P. lobata germplasms
材料 Materials | 主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution(%) | 累积贡献率 Cumulative(%) |
---|---|---|---|---|
AUS | Ⅰ | 15.008 | 71.468 | 71.468 |
Ⅱ | 4.137 | 19.699 | 91.167 | |
HN | Ⅰ | 12.585 | 59.931 | 59.931 |
Ⅱ | 7.199 | 34.281 | 94.212 | |
JS | Ⅰ | 14.192 | 67.583 | 67.583 |
Ⅱ | 4.917 | 23.413 | 90.996 |
材料 Materials | 主成分 Principal component | 耐盐性指标特征向量 Indicator eigenvector | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | ||
AUS | Ⅰ | 0.245 | 0.251 | 0.257 | 0.257 | 0.258 | 0.234 | 0.148 | 0.257 | 0.255 | -0.244 | -0.215 |
Ⅱ | 0.032 | 0.002 | -0.001 | -0.009 | -0.025 | 0.011 | -0.281 | 0.048 | 0.075 | -0.158 | 0.060 | |
HN | Ⅰ | 0.182 | 0.139 | 0.235 | 0.282 | 0.138 | 0.259 | 0.278 | 0.271 | 0.260 | -0.237 | -0.254 |
Ⅱ | 0.282 | 0.278 | 0.188 | 0.005 | 0.322 | 0.113 | 0.027 | 0.065 | 0.139 | 0.202 | 0.037 | |
JS | Ⅰ | 0.254 | 0.260 | 0.262 | 0.245 | 0.260 | 0.228 | 0.259 | 0.257 | 0.254 | -0.260 | -0.096 |
Ⅱ | 0.111 | -0.080 | -0.050 | -0.170 | 0.036 | 0.126 | 0.055 | -0.100 | -0.110 | 0.024 | -0.410 | |
材料 Materials | 主成分 Principal component | 耐盐性指标特征向量 Indicator eigenvector | ||||||||||
T12 | T13 | T14 | T15 | T16 | T17 | T18 | T19 | T20 | T21 | |||
AUS | Ⅰ | -0.243 | 0.175 | 0.232 | 0.231 | -0.183 | 0.253 | 0.082 | 0.170 | 0.160 | -0.092 | |
Ⅱ | -0.137 | 0.283 | -0.202 | -0.163 | 0.123 | 0.058 | 0.463 | -0.369 | 0.383 | 0.443 | ||
HN | Ⅰ | -0.245 | 0.249 | -0.070 | -0.266 | -0.193 | -0.161 | -0.230 | -0.227 | -0.151 | 0.010 | |
Ⅱ | 0.180 | -0.127 | -0.349 | 0.059 | 0.224 | 0.304 | 0.212 | 0.205 | -0.298 | -0.364 | ||
JS | Ⅰ | -0.254 | 0.252 | -0.126 | -0.236 | -0.223 | 0.091 | -0.138 | 0.118 | 0.107 | 0.207 | |
Ⅱ | -0.110 | 0.069 | 0.220 | -0.050 | 0.227 | 0.418 | 0.318 | -0.340 | 0.406 | 0.206 |
Table 5 Principal component analysis of salt tolerance index of three kinds of P. lobata
材料 Materials | 主成分 Principal component | 耐盐性指标特征向量 Indicator eigenvector | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | ||
AUS | Ⅰ | 0.245 | 0.251 | 0.257 | 0.257 | 0.258 | 0.234 | 0.148 | 0.257 | 0.255 | -0.244 | -0.215 |
Ⅱ | 0.032 | 0.002 | -0.001 | -0.009 | -0.025 | 0.011 | -0.281 | 0.048 | 0.075 | -0.158 | 0.060 | |
HN | Ⅰ | 0.182 | 0.139 | 0.235 | 0.282 | 0.138 | 0.259 | 0.278 | 0.271 | 0.260 | -0.237 | -0.254 |
Ⅱ | 0.282 | 0.278 | 0.188 | 0.005 | 0.322 | 0.113 | 0.027 | 0.065 | 0.139 | 0.202 | 0.037 | |
JS | Ⅰ | 0.254 | 0.260 | 0.262 | 0.245 | 0.260 | 0.228 | 0.259 | 0.257 | 0.254 | -0.260 | -0.096 |
Ⅱ | 0.111 | -0.080 | -0.050 | -0.170 | 0.036 | 0.126 | 0.055 | -0.100 | -0.110 | 0.024 | -0.410 | |
材料 Materials | 主成分 Principal component | 耐盐性指标特征向量 Indicator eigenvector | ||||||||||
T12 | T13 | T14 | T15 | T16 | T17 | T18 | T19 | T20 | T21 | |||
AUS | Ⅰ | -0.243 | 0.175 | 0.232 | 0.231 | -0.183 | 0.253 | 0.082 | 0.170 | 0.160 | -0.092 | |
Ⅱ | -0.137 | 0.283 | -0.202 | -0.163 | 0.123 | 0.058 | 0.463 | -0.369 | 0.383 | 0.443 | ||
HN | Ⅰ | -0.245 | 0.249 | -0.070 | -0.266 | -0.193 | -0.161 | -0.230 | -0.227 | -0.151 | 0.010 | |
Ⅱ | 0.180 | -0.127 | -0.349 | 0.059 | 0.224 | 0.304 | 0.212 | 0.205 | -0.298 | -0.364 | ||
JS | Ⅰ | -0.254 | 0.252 | -0.126 | -0.236 | -0.223 | 0.091 | -0.138 | 0.118 | 0.107 | 0.207 | |
Ⅱ | -0.110 | 0.069 | 0.220 | -0.050 | 0.227 | 0.418 | 0.318 | -0.340 | 0.406 | 0.206 |
指标 Parameters | 种质名Germplasm name | ||
---|---|---|---|
AUS | HN | JS | |
T1 | 0.443 | 0.410 | 0.430 |
T2 | 0.517 | 0.476 | 0.608 |
T3 | 0.497 | 0.486 | 0.480 |
T4 | 0.470 | 0.395 | 0.416 |
T5 | 0.463 | 0.526 | 0.514 |
T6 | 0.488 | 0.478 | 0.461 |
T7 | 0.476 | 0.474 | 0.460 |
T8 | 0.485 | 0.529 | 0.582 |
T9 | 0.421 | 0.458 | 0.501 |
T10 | 0.533 | 0.565 | 0.443 |
T11 | 0.344 | 0.498 | 0.488 |
T12 | 0.496 | 0.498 | 0.535 |
T13 | 0.478 | 0.526 | 0.461 |
T14 | 0.421 | 0.458 | 0.501 |
T15 | 0.512 | 0.525 | 0.496 |
T16 | 0.468 | 0.426 | 0.472 |
T17 | 0.474 | 0.504 | 0.519 |
T18 | 0.499 | 0.549 | 0.533 |
T19 | 0.542 | 0.464 | 0.501 |
平均值 Average | 0.475 | 0.487 | 0.495 |
耐受性顺序Order of resistant | 3 | 2 | 1 |
Table 6 Comprehensive evaluation of tolerance of three P. lobata germplasms to different calcium concentrations
指标 Parameters | 种质名Germplasm name | ||
---|---|---|---|
AUS | HN | JS | |
T1 | 0.443 | 0.410 | 0.430 |
T2 | 0.517 | 0.476 | 0.608 |
T3 | 0.497 | 0.486 | 0.480 |
T4 | 0.470 | 0.395 | 0.416 |
T5 | 0.463 | 0.526 | 0.514 |
T6 | 0.488 | 0.478 | 0.461 |
T7 | 0.476 | 0.474 | 0.460 |
T8 | 0.485 | 0.529 | 0.582 |
T9 | 0.421 | 0.458 | 0.501 |
T10 | 0.533 | 0.565 | 0.443 |
T11 | 0.344 | 0.498 | 0.488 |
T12 | 0.496 | 0.498 | 0.535 |
T13 | 0.478 | 0.526 | 0.461 |
T14 | 0.421 | 0.458 | 0.501 |
T15 | 0.512 | 0.525 | 0.496 |
T16 | 0.468 | 0.426 | 0.472 |
T17 | 0.474 | 0.504 | 0.519 |
T18 | 0.499 | 0.549 | 0.533 |
T19 | 0.542 | 0.464 | 0.501 |
平均值 Average | 0.475 | 0.487 | 0.495 |
耐受性顺序Order of resistant | 3 | 2 | 1 |
1 | Gu X H. Effects of calcium fertiiizer application on peanut physiological characteristics, yield and quality under drought stress. Tai’an: Shandong Agricultural University, 2014. |
顾学花. 施钙对干旱胁迫下花生生理特性,产量和品质的影响. 泰安: 山东农业大学, 2014. | |
2 | Wang J. Response of poa pratensis to exogenous calcium addition under salt stress. Lanzhou: Lanzhou University, 2020. |
王婧. 盐胁迫下草地早熟禾对外源钙添加的响应. 兰州: 兰州大学, 2020. | |
3 | Yuan J W, Zhang J, Wang L, et al. Effects of exogenous calcium on physiological indexes of apple flower organs under low temperature stress. Northern Horticulture, 2021, 11(5): 28-33. |
袁嘉玮, 张健, 王璐, 等. 外源钙对低温胁迫下苹果花器官生理指标的影响. 北方园艺, 2021, 11(5): 28-33. | |
4 | Han Z P, Zhang H X, Li X, et al. Effects of Ca(NO3)2 stress on growth and physiological properties of cucumber seedlings. Northern Horticulture, 2019, 11(1): 22-29. |
韩志平, 张海霞, 李侠, 等. 硝酸钙胁迫对黄瓜幼苗生长和生理特性的影响. 北方园艺, 2019, 11(1): 22-29. | |
5 | Liao J, Ren H M, Liu C K, et al. Advances in plant physiology and molecular mechanism of calcium signaling pathway under saline-alkali stress.Molecular Plant Breeding, 2020, 25(1): 1-8. |
廖婕, 任慧敏, 柳参奎, 等. 盐碱胁迫下植物生理和钙信号通路分子机制的研究进展. 分子植物育种, 2020, 25(1): 1-8. | |
6 | Wang G, Yu L H, Wang Y G, et al. Effect of calcium nutrition on salt tolerance of sugar beet seedlings. Sugar Crops of China, 2021, 43(2): 40-46. |
王堽, 於丽华, 王宇光, 等. 钙营养对甜菜幼苗耐盐性的影响. 中国糖料, 2021, 43(2): 40-46. | |
7 | Shi H F, Lu J Y Z, Han Z R, et al. The effect of calcium on seed germination and seedling growth of Lolium multiflorum Lam. Seed, 2019, 38(9): 105-108. |
石慧芳, 陆锦优子, 韩卓锐, 等. 钙对多花黑麦草种子萌发和幼苗生长的影响. 种子, 2019, 38(9): 105-108. | |
8 | Chi Y K. Study on mode and technology of grassland establishment and ecological animal husbandry in the karst rocky desertification area. Guiyang: Guizhou Normal University, 2019. |
池永宽. 喀斯特石漠化草地建植与生态畜牧业模式及技术研究. 贵阳: 贵州师范大学, 2019. | |
9 | Liu J. Environmental impact by mining in karst rocky desertification areas and research on comprehensive treatment. Changsha: Central South University, 2010. |
刘霁. 喀斯特石漠化地区采矿环境影响及综合治理研究. 长沙: 中南大学, 2010. | |
10 | Du W P, Yan H M, Zhen L, et al. The experience and practice of desertification control in karst region of Southwest China. Acta Ecologica Sinica, 2019, 39(16): 5798-5808. |
杜文鹏, 闫慧敏, 甄霖, 等. 西南岩溶地区石漠化综合治理研究. 生态学报, 2019, 39(16): 5798-5808. | |
11 | Li X F. Speciation of valcium in soil and plants’ leaves in karst ecosystem and its ecological significance. Guilin: Guangxi Normal University, 2006. |
李小方. 岩溶环境中土壤-植物系统钙元素形态分析及其生态意义. 桂林: 广西师范大学, 2006. | |
12 | Hu P, Liu S, Ye Y, et al. Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region. Applied Soil Ecology, 2018, 13(2): 169-178. |
13 | Yu H J. Study on the effects of dispersible tab lets containing I sofiavones from Pueraria lobata on osteoporosis in rats and its mechanism. Jinan: Shandong University of Traditional Chinese Medicin, 2012. |
虞慧娟. 葛藤异黄酮分散片抗大鼠骨质疏松作用及机理的研究. 济南: 山东中医药大学, 2012. | |
14 | Yuan X F. Pueraria montana is covered in treasure. Health Preserving, 2020, 432(9): 44-46. |
袁秀芬. 葛藤一身都是宝. 养生月刊, 2020, 432(9): 44-46. | |
15 | Li A D, Li W J, Peng X, et al. Niche characteristics for dominant species of a wild Pueraria lobata community in the Guizhou Karst Region. Journal of Zhejiang A & F University, 2012, 29(4): 491-497. |
李安定, 李苇洁, 彭熙, 等. 贵州喀斯特区野生葛藤群落主要种群生态位. 浙江农林大学学报, 2012, 29(4): 491-497. | |
16 | Li H S. Principles and techniques of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2000. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. | |
17 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1980, 22(5): 867-880. |
18 | Wang J Y, Ao H, Zhang J. Experimental techniques and principles of plant physiology and biochemistry. Harbin: Northeast Forestry University Press, 2003. |
王晶英, 敖红, 张杰. 植物生理生化实验技术与原理. 哈尔滨: 东北林业大学出版社, 2003. | |
19 | Zhang L, Jia Z G, Ma Q H, et al. Effects of saline-alkali stresses on the growth and endogenous hormone contents in leaves of hybrid hazelnut Liaozhen 3. Forest Research, 2015, 28(3): 394-401. |
张丽, 贾志国, 马庆华, 等. 盐碱胁迫对平欧杂种榛生长及叶片内源激素含量的影响. 林业科学研究, 2015, 28(3): 394-401. | |
20 | Yuan H, Wang J L, Yuan H. Quality evaluation of Xinjiang jujube based on principal component analysis and cluster analysis. The Food Industry, 2020, 41(9): 305-309. |
袁辉, 王建玲, 远辉. 基于主成分分析和聚类分析对新疆红枣的品质评价. 食品工业, 2020, 41(9): 305-309. | |
21 | Chen Y Q, Su K Q, Chen T X, et al. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
陈雅琦, 苏楷淇, 陈泰祥, 等. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响. 草业学报, 2021, 30(3): 137-157. | |
22 | Xu X, Fan R, Zheng R, et al. Proteomic analysis of seed germination under salt stress in soybeans. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2011, 12(7): 25-28. |
23 | Guo X L, Zhao P P, Yang J J. Drought-resistant evaluation of three kinds of herbage during seed germination in artificial drought conditions. Seed, 2020, 39(6): 19-23. |
郭小龙, 赵珮珮, 杨建军. 模拟干旱胁迫下3种牧草种子萌发期抗旱性评价. 种子, 2020, 39(6): 19-23. | |
24 | Kong D Z, Liu Y P, Su S W, et al. Effects of exogenous calcium on the physiological characteristics of lotus under salt stress. Journal of Henan Agricultural University, 2020, 20(4): 56-64. |
孔德政, 刘艺平, 苏少文, 等. 外源钙对盐胁迫下荷花生理特性的影响. 河南农业大学学报, 2020, 20(4): 56-64. | |
25 | Li Y M, Jiang Y T, Qu G N. Effects of salt stress on seed germination of Pogostemon cablin. Journal of Chinese Medicinal Materials, 2019, 42(11): 2491-2496. |
李玉梅, 姜云天, 曲广男. 盐胁迫对东北藿香种子萌发的影响. 中药材, 2019, 42(11): 2491-2496. | |
26 | Dong L Y, Xu D, Fu R X. The environmental factors affecting seed germination of Carolina crane’s-bill Geranium carolinianum. Journal of Plant Protection, 2020, 47(5): 102-108. |
董立尧, 徐丹, 付瑞霞. 野老鹳草Geranium carolinianum种子的萌发条件. 植物保护学报, 2020, 47(5): 102-108. | |
27 | Jose A M, Maria O, Agustina B V, et al. Plant responses to salt stress: Adaptive mechanisms. Agronomy, 2017, 7(1): 18-22. |
28 | Satish B, Mansi G, Prachi J, et al. Signaling mechanisms and biochemical pathways regulating pollen-stigma interaction, seed development and seedling growth in sunflower under salt stress. Plant Signaling & Behavior, 2021, 16(11): 98-110. |
29 | Mi Y W, Wang G X, Gong C W, et al. Effects of salt stress on growth and physiology of Isatis indigotica seedlings. Acta Prataculturae Sinica, 2018, 27(6): 43-51. |
米永伟, 王国祥, 龚成文, 等. 盐胁迫对菘蓝幼苗生长和抗性生理的影响. 草业学报, 2018, 27(6): 43-51. | |
30 | Liu Y G, Peng B, Xu M Z, et al. Effects of calcium stress on growth and physiological index of Typha angustifolia L. in karst wetland. Journal of West China Forestry Science, 2020, 49(4): 168-175. |
刘云根, 彭博, 徐鸣洲, 等. 钙胁迫对狭叶香蒲的生长及逆境生理指标的影响. 西部林业科学, 2020, 49(4): 168-175. | |
31 | Zhao L L, Wang P C, Chen C, et al. Influence of long-term persistent drought stress on growth, physiological and ecological characteristics of Fagopyrum dibotrys and comprehensive evaluation of their drought resistance. Acta Agrestia Sinica, 2016, 24(4): 825-833. |
赵丽丽, 王普昶, 陈超, 等. 持续干旱对金荞麦生长、生理生态特性的影响及抗旱性评价. 草地学报, 2016, 24(4): 825-833. | |
32 | Qiu Q H, Deng S Y. Influence of salt stress on seeds germination and seedling growth of Brassica campestris. Northern Horticulture, 2013, 11(18): 27-29. |
邱清华, 邓绍云. 盐胁迫对七个品种紫菜薹种子萌发及幼苗生长的影响. 北方园艺, 2013, 11(18): 27-29. | |
33 | Shi R G, Zhao H Y, Qi M Y, et al. Effects of exogenous choline chloride and calcium chloride on germination and physiological characteristics of wheat under salt stress. Journal of Anhui Agricultural Sciences, 2020, 48(14): 22-26. |
侍瑞高, 赵慧云, 戚名扬, 等. 外源氯化胆碱和氯化钙对盐胁迫下小麦种子萌发和幼苗生理特性的影响. 安徽农业科学, 2020, 48(14): 22-26. | |
34 | Jia X P, Deng Y M, Sun X B, et al. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum. Acta Prataculturae Sinica, 2015, 24(12): 204-212. |
贾新平, 邓衍明, 孙晓波, 等. 盐胁迫对海滨雀稗生长和生理特性的影响. 草业学报, 2015, 24(12): 204-212. | |
35 | Zhu Y P, Meng X H, Gai W L, et al. Effects of salt stress on antioxidant enzymes and osmotic adjustment substances of winter wheat. Chinese Agricultural Science Bulletin, 2017, 19(19): 7-12. |
朱玉鹏, 孟祥浩, 盖伟玲, 等. 盐胁迫对冬小麦花后抗氧化酶, 渗透调节物质的影响. 中国农学通报, 2017, 19(19): 7-12. | |
36 | Marcelo F P, Pedro P B, Agnaldo R M C, et al. Physiological, metabolic, and stomatal adjustments in response to salt stress in Jatropha curcas. Plant Physiology and Biochemistry, 2021, 168(1): 56-70. |
37 | Yan J Q Z, Li G T, Wang Y L, et al. Effects of salt stress on seed germination and seedling physiological characteristics of Morus mongolica. Journal of Agricultural Science and Technology, 2020, 22(1): 33-42. |
闫晶秋子, 李钢铁, 王月林, 等. 盐胁迫对蒙桑种子萌发及幼苗生长的影响. 中国农业科技导报, 2020, 22(1): 33-42. | |
38 | Guo Y Y, Yu H Y, Yang M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling. Russian Journal of Plant Physiology, 2018, 65(2): 65-68. |
39 | Bai X S. Adaptive responses of soybean leaves to osmotic retion under drought and salt stress. Modern Agricultural Science and Technology, 2019, 1(1): 5-6. |
柏新盛. 旱盐胁迫下大豆叶片渗透调节的适应性响应. 现代农业科技, 2019, 1(1): 5-6. | |
40 | Sun C C, Zhao H X, Zheng C X. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling. Plant Physiology Communications, 2017, 53(3): 470-476. |
孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响. 植物生理学报, 2017, 53(3): 470-476. | |
41 | Xu D, Wang W, Gao T, et al. Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. Conservation Physiology, 2017, 12(1): 1-3. |
42 | Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9(10): 25-26. |
43 | Yildiztugay E, Sekmen A H, Turkan I, et al. Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Plant Physiology & Biochemistry, 2011, 49(8): 816-824. |
44 | Ma Y. Physiological responses of Pinus sylvestris var. mongolica seedling under NaCl stress. Liaoning Forestry Science and Technology, 2020, 1(3): 47-49. |
马莹. NaCl胁迫下樟子松苗木的生理响应. 辽宁林业科技, 2020, 1(3): 47-49. | |
45 | Liu Y J, Zhang L, Tian X Y, et al. The effects of salt stress on endogenous hormones, NADKase and Ca2+-ATPase in leaves of Puccinellia chinampoensis seedlings. Pratacultural Science, 2008, 11(4): 51-54 |
刘延吉, 张蕾, 田晓艳, 等. 盐胁迫对碱茅幼苗叶片内源激素, NAD激酶及Ca2+-ATPase的效应. 草业科学, 2008, 11(4): 51-54. | |
46 | Yu Z, Duan X, Luo L, et al. How plant hormones mediate salt stress responses. Trends in Plant Science, 2020, 25(11): 33-36. |
47 | Luo Y J, Zou X, Peng Y, et al. Effects of salt stress on growth and endogenous hormones of two species of crabapple. Non-wood Forest Research, 2021, 39(1): 201-210. |
罗玉婕, 邹旭, 彭冶, 等. 盐胁迫对两种海棠生长和内源激素的影响. 经济林研究, 2021, 39(1): 201-210. | |
48 | Sun R Z, Jiang G B, Wu X Y, et al. Response of endogenous hormone in apoplast of two poplars to salt stress. Journal of Gansu Agricultural University, 2013, 48(2): 62-66. |
孙若峥, 姜国斌, 吴祥云, 等. 2种杨树嫩茎质外体内源激素对盐胁迫的响应. 甘肃农业大学学报, 2013, 48(2): 62-66. | |
49 | Li H Y, Li A X, Wang C, et al. Effects of salt stress on endogenous hormone contents in sunflower seedlings. Agricultural Research in the Arid Areas, 2018, 36(6): 92-97. |
李海洋, 李爱学, 王成, 等. 盐胁迫对苗期向日葵内源激素含量的影响. 干旱地区农业研究, 2018, 36(6): 92-97. | |
50 | Yuan C X, Ding J. Effects of water stress on the content of IAA and the activities of IAA oxidase and peroxidase in cotton leaves. Acta Phytophysiologica Sinica, 1990, 16(2): 179-180. |
袁朝兴, 丁静. 水分胁迫对棉花叶片中IAA从含量、IAA氧化酶和过氧化物酶活性的影响. 植物生理学报, 1990, 16(2): 179-180. | |
51 | Chen D, Liu Y J, Wu K. Effect of salt stress on the content of endogenous hormones in the leaf of Puccinellia chinampoensis seedling. Journal of Anhui Agricultural Sciences, 2007, 35(12): 3476-3477. |
陈丹, 刘延吉, 吴阔. 盐胁迫对碱茅幼苗叶片内源激素的影响. 安徽农业科学, 2007, 35(12): 3476-3477. |
[1] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[2] | Xiao-fan SUN, Yi-long ZHANG, Pei-ying LI, Zong-jiu SUN. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 69-78. |
[3] | Dong-rong HAN, Tuo YAO, Hai-yun LI, Shu-chao HUANG, Yan-shan YANG, Ya-min GAO, Chang-ning LI, Yin-cui ZHANG. Effects of combined application of microbial fertilizer and chemical fertilizer on the growth of Lolium perenne [J]. Acta Prataculturae Sinica, 2022, 31(3): 136-143. |
[4] | Fu-zhi LIU, Ying-fang ZHANG, Yuan CHEN. Effects of exogenous trehalose on growth regulation and total flavonoid content of Glycyrrhiza uralensis seedlings under NaHCO3 stress [J]. Acta Prataculturae Sinica, 2021, 30(7): 148-156. |
[5] | Hui-fang YAN, Juan SUN. Effect of seed moisture content and deterioration time on seed vigor and seedling growth of Sorghum bicolor×Sorghum sudanense [J]. Acta Prataculturae Sinica, 2021, 30(12): 152-160. |
[6] | Yu-lian GAO, Jing CHANG, Yi-hui WANG, Feng LI, Hai-ping LI, Chong-yong MA. Allelopathic effects of Stellera chamaejasme on seed germination and growth of three crops [J]. Acta Prataculturae Sinica, 2021, 30(10): 83-91. |
[7] | Zhen-song LI, Li-qiang WAN, Shuo LI, Xiang-lin LI. Response of alfalfa root architecture and physiological characteristics to drought and rehydration [J]. Acta Prataculturae Sinica, 2021, 30(1): 189-196. |
[8] | LI Feng-lan, WU Jia-wen, YAO Shu-kuan, ZHAO Zi-yi, ZHAO Xiao-can, HE Fu-meng, ZHU Yuan-fang, SHI Qi-hai, ZHOU Lei, XU Yong-qing. A study of the allelopathic effect of extracts from different parts of Iva xanthiifolia on five native species [J]. Acta Prataculturae Sinica, 2020, 29(9): 169-178. |
[9] | ZHANG Li-xia, CHANG Qing-shan, XUE Xian, LIU Wei, ZHANG Qiao-ming, CHEN Su-dan, ZHENG Yi-qi, LI Jing-lin, CHEN Wan-dong, LI Da-zhao. Effects of acid stress on chlorophyll fluorescence characteristics and root antioxidant activity of Prunella vulgaris [J]. Acta Prataculturae Sinica, 2020, 29(8): 134-142. |
[10] | CUI Xue-lian, XIA Chao. Effect of exogenous abscisic acid on seedling establishment of Epichloё gansuensis-Achnatherum inebrians symbiont [J]. Acta Prataculturae Sinica, 2020, 29(7): 70-80. |
[11] | LIANG Jun, QUAN Xiao-long, ZHANG Jie-xue, SHI Hui-lan, DUAN Zhong-hua, QIAO You-ming. Potential allelopathic effects of water extracts of three grasses on germination of their own seeds and seedling growth [J]. Acta Prataculturae Sinica, 2020, 29(7): 81-89. |
[12] | LI Ke, ZHOU Zhuang-yu, LI Si-ju, YAO Hao-zheng, ZHOU Ying, MIAO Yu-jing, TANG Xiao-qing, WANG Kang-cai. Growth, osmotic adjustment and antioxidant capacity responses of Schizonepeta tenuifolia to drought stress [J]. Acta Prataculturae Sinica, 2020, 29(5): 150-158. |
[13] | Yong HUANG, Meng GUO, Hong-rui ZHANG, Yan ZHOU, He-min LI, Zhi-ming GAO, Pan-pan WANG. Effects of salt stress on seed germination and seedling growth of carnation [J]. Acta Prataculturae Sinica, 2020, 29(12): 105-111. |
[14] | Ju-hong WANG, Sheng-jing SHI, Wen CHEN, Gui-mei GAN, Sai-na CHEN, Zhang-wei LI. Effects of Bacillus subtilis and three actinomycetes on seed germination and seedling growth of Bidens pilosa and Eclipta prostrata under salt stress [J]. Acta Prataculturae Sinica, 2020, 29(12): 112-120. |
[15] | Ting-yan MA, Yan-zhong LI. Species and pathogenicity of seed-borne fungi in 32 varieties of alfalfa [J]. Acta Prataculturae Sinica, 2020, 29(12): 131-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||