Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (2): 97-109.DOI: 10.11686/cyxb2022198
Previous Articles Next Articles
Jie ZHANG(), Kai CHENG, Ying-chun WANG()
Received:
2022-05-05
Revised:
2022-07-28
Online:
2023-02-20
Published:
2022-12-01
Contact:
Ying-chun WANG
Jie ZHANG, Kai CHENG, Ying-chun WANG. Analysis of the calcium-dependent protein kinase RtCDPK16 response to abiotic stress in Reaumuria trigyna[J]. Acta Prataculturae Sinica, 2023, 32(2): 97-109.
引物Primer | 上游引物序列Forward primer sequences (F) | 下游引物序列Reverse primer sequences (R) |
---|---|---|
RtCDPK16 | CGCTCTAGAATGGGTTCTTGTTTCTC | CGCGAGCTCTCACAGCTTACGTGAA |
RtCDPK16-Q | GTGGATGCTCAAGCGAGAAGTC | TCCAGCAATTCACCGCCTTCAC |
RtActin-Q | CTGGATTCTCCTGATGGTGTGTCT | GAACCACCGATCCAGACTCGATAC |
RtCDPK16-1300 | CGCGAGCTCATGGGTTCTTGTTT | CGCTCTAGACAGCTTACGTGAAG |
AtActin | CTGGATTCTGGTGATGGTGTGTCT | GAACCACCGATCCAGACACTGTAC |
AtPOD1 | AAAGCGAACATTTTACTCTGGG | CAACAAGTCAATCCTCTAGG |
AtSOD1 | AGGAAACATCACTGTTGGAGAT | GAGTTTGTGATCGCAGAGAGGAA |
AtCAT1 | TCCTGTTATCGTTCGTTTCTCA | CAAAGTTCCCCTCTCTGGTGTA |
AtAPX1 | AAATACGTCCCTGATGAAGATG | CGAGCTACGATCGCACACAG |
AtP5CS1 | GCGCATAGTTTCTGATGCAA | TGCAACTTCGTGATCCTCTG |
AtRD29A | TTCTGTAAGGACGACGTTTACA | CGTACTCGTTACATCCTCTGTT |
AtDREB2A | AACCTGTCAGAACAACAGCAGG | TTAAGCCTGCAAACACATCGTCGC |
AtRD22 | GATTTGTCTATGCACTGCTCTG | TGGAAGCTTTCTGTTACAAACG |
AtABF4 | AACAACTTAGGAGGTGGTGGTC | CTTCAGGAGTTCATCCATGTTC |
AtSnRK2.2 | ATATGCCATCGGGATCTGAA | TTGGTTGGGAATGAAGAACAG |
AtSnRK2.3 | GTTGGATGGAAGTCCTGCTC | TGCCATCATATTCCTGACGA |
AtNCED3 | GATGAATTTGTTACTGAGAGCG | AACACTAGGATCAGCCGTTTTA |
Table 1 RT-PCR primer sequences (5′-3′)
引物Primer | 上游引物序列Forward primer sequences (F) | 下游引物序列Reverse primer sequences (R) |
---|---|---|
RtCDPK16 | CGCTCTAGAATGGGTTCTTGTTTCTC | CGCGAGCTCTCACAGCTTACGTGAA |
RtCDPK16-Q | GTGGATGCTCAAGCGAGAAGTC | TCCAGCAATTCACCGCCTTCAC |
RtActin-Q | CTGGATTCTCCTGATGGTGTGTCT | GAACCACCGATCCAGACTCGATAC |
RtCDPK16-1300 | CGCGAGCTCATGGGTTCTTGTTT | CGCTCTAGACAGCTTACGTGAAG |
AtActin | CTGGATTCTGGTGATGGTGTGTCT | GAACCACCGATCCAGACACTGTAC |
AtPOD1 | AAAGCGAACATTTTACTCTGGG | CAACAAGTCAATCCTCTAGG |
AtSOD1 | AGGAAACATCACTGTTGGAGAT | GAGTTTGTGATCGCAGAGAGGAA |
AtCAT1 | TCCTGTTATCGTTCGTTTCTCA | CAAAGTTCCCCTCTCTGGTGTA |
AtAPX1 | AAATACGTCCCTGATGAAGATG | CGAGCTACGATCGCACACAG |
AtP5CS1 | GCGCATAGTTTCTGATGCAA | TGCAACTTCGTGATCCTCTG |
AtRD29A | TTCTGTAAGGACGACGTTTACA | CGTACTCGTTACATCCTCTGTT |
AtDREB2A | AACCTGTCAGAACAACAGCAGG | TTAAGCCTGCAAACACATCGTCGC |
AtRD22 | GATTTGTCTATGCACTGCTCTG | TGGAAGCTTTCTGTTACAAACG |
AtABF4 | AACAACTTAGGAGGTGGTGGTC | CTTCAGGAGTTCATCCATGTTC |
AtSnRK2.2 | ATATGCCATCGGGATCTGAA | TTGGTTGGGAATGAAGAACAG |
AtSnRK2.3 | GTTGGATGGAAGTCCTGCTC | TGCCATCATATTCCTGACGA |
AtNCED3 | GATGAATTTGTTACTGAGAGCG | AACACTAGGATCAGCCGTTTTA |
1 | Tang Y C. Physiological response of exogenous Ca2+ to Nitraria tangutorum under drought stress, cloning and functional analysis of NtCDPK1 and NtCIPK5. Hohhot:Inner Mongolia University, 2019. |
汤宇晨. 干旱胁迫下唐古特白刺对外源Ca2+的生理响应及NtCDPK1,NtCIPK5的克隆与功能分析. 呼和浩特: 内蒙古大学, 2019. | |
2 | Perochon A, Aldon D, Galaud J P, et al. Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie, 2011, 93(12): 2048-2053. |
3 | Liese A, Romeis T. Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013, 1833(7): 1582-1589. |
4 | Jiang S S, Zhang D, Kong X P, et al. Research progress of structural characteristics and functions of calcium-dependent protein kinases in plants. Biotechnology Bulletin, 2013, 23(6): 18-25. |
姜珊珊, 张丹, 孔祥培, 等. 植物中的钙依赖蛋白激酶(CDPK)的结构特征和功能研究进展. 生物技术通报, 2013, 23(6):18-25. | |
5 | Batistič O, Kudla J. Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012, 1820(8): 1283-1293. |
6 | Wang W H, Yi X Q, Han A D, et al. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. Journal of Experimental Botany, 2012, 63(2): 177-190. |
7 | Zhu J K. Abiotic stress signaling and responses in plants. Plant Cell, 2016, 167(2): 313-324. |
8 | Das R, Pandey G K. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Current Genomics, 2010(11): 2-13. |
9 | Jaworski K, Pawełek A, Kopcewicz J,et al. The calcium-dependent protein kinase (PnCDPK1) is involved in Pharbitis nil flowering. Journal of Plant Physiology, 2012, 169(16): 1578-1585. |
10 | Matschi S, Werner S, Schulze W X, et al. Function of calcium dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development. The Plant Journal, 2013, 73(6): 883-896. |
11 | Zhang J. Cloning and functional analysis of RtCML42 and RtCDPK16 in rare salt-secreting plant Reaumuria trigyna. Hohhot: Inner Mongolia University, 2020. |
张洁. 珍稀泌盐植物长叶红砂RtCML42 和RtCDPK16的克隆与功能分析. 呼和浩特: 内蒙古大学, 2020. | |
12 | Zhang K, Han Y T, Zhao F L, et al. Genome-wide identification and expression analysis of the CDPK gene family in grape, Vitis spp. BMC Plant Biology, 2015, 15(1): 164. |
13 | Hubbard K E, Siegel R S, Valerio G, et al. Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses. Annals of Botany, 2012, 109(1): 5-17. |
14 | Ren X L, Qi G N, Feng H Q, et al. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. The Plant Journal, 2013, 74(2): 258-266. |
15 | McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytologist, 2010, 159(3): 585-598. |
16 | Boudsocq M, Sheen J. CDPKs in immune and stress signaling. Trends in Plant Science, 2013, 18(1): 30-40. |
17 | Asai S, Ichikawa T, Nomura H, et al. The variable domain of a plant calcium-dependent protein kinase (CDPK) confers subcellular localization and substrate recognition for NADPH oxidase. Journal of Biological Chemistry, 2013, 288(20): 14332-14340. |
18 | Knight H. Calcium signaling during abiotic stress in plants. International Review of Cytology, 2000, 195(3): 269-324. |
19 | Weckwerth P, Ehlert B, Romeis T. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling. Plant, Cell & Environment, 2015, 38(3): 544-558. |
20 | Jiang S, Zhang D, Wang L, et al. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2013, 71(5): 112-120. |
21 | Asano T, Hayashi N, Kikuchi S, et al. CDPK-mediated abiotic stress signaling. Plant Signaling & Behavior, 2012, 7(7): 817-821. |
22 | Mehlmer N, Wurzinger B, Stael S, et al. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. The Plant Journal, 2010, 23(1): 484-498. |
23 | Xu J, Tian Y S, Peng R H, et al. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta, 2010, 231(6): 1251-1260. |
24 | Zou J J, Wei F J, Wang C, et al. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+- mediated stomatal regulation in response to drought stress. Plant Physiology, 2010, 154(3): 1232-1243. |
25 | Franz S, Ehlert B, Liese A, et al . Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Molecular Plant, 2011, 4(1): 83-96. |
26 | Li N, Wang X, Ma B, et al. Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. Journal of Plant Physiology, 2017, 218(4): 109-120. |
27 | Li N, Wang X, Ma B, et al. A leucoanthocyanidin dioxygenase gene (RtLDOX2) from the feral forage plant Reaumuria trigyna promotes the accumulation of flavonoids and improves tolerance to abiotic stresses. Journal of Plant Research, 2021, 134(5): 1121-1138. |
28 | Ma B, Liu X, Guo S, et al. RtNAC100 involved in the regulation of ROS, Na+ accumulation and induced salt-related PCD through MeJA signal pathways in recretohalophyte Reaumuria trigyna. Plant Science, 2021, 310(4): 110976-110985. |
29 | Choi W G, Toyota M, Kim S H, et al. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences, 2014, 111(17): 6497-6502. |
30 | Zuo R, Hu R, Chai G, et al. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Molecular Biology Reports, 2013, 40(3): 2645-2662. |
31 | Dubrovina A S, Kiselev K V, Khristenko V S, et al. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. Journal of Plant Physiology, 2015, 185(18): 1-12. |
32 | Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55(3): 373-399. |
33 | Foyer C H, Noctor G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 2005, 17(3): 1866-1875. |
34 | Torres M A, Dangl J L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 2005, 8(4): 397-403. |
35 | Fantino E, Segretin M E, Santin F, et al. Analysis of the potato calcium-dependent protein kinase family and characterization of StCDPK7, a member induced upon infection with Phytophthora infestans. Plant Cell Reports, 2017, 36(7): 1137-1157. |
36 | Asano T, Hayashi N, Kobayashi M, et al. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. The Plant Journal, 2012, 69(1): 26-36. |
37 | Dubiella U, Seybold H, Durian G, et al. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proceedings of the National Academy of Sciences, 2013, 110(21): 8744-8749. |
38 | Wan B, Lin Y, Mou T. Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Letters, 2007, 581(6): 1179-1189. |
39 | Pandey G K, Kanwar P, Singh A, et al. Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiology, 2015, 83(5): 25-28. |
40 | Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 2010, 61(5): 651-679. |
41 | Zhu S Y, Yu X C. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. The Plant Cell, 2007, 19(30): 3019-3036. |
42 | Choi H I, Park H J, Park J H, et al. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiology, 2005, 13(9): 50-61. |
[1] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
[2] | Jiao-yang TIAN, Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(7): 111-121. |
[3] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[4] | Wen-hui XIE, Li-juan HUANG, Li-li ZHAO, Lei-ting WANG, Wen-wu ZHAO. Effects of calcium salt stress on seed germination and seedling physiological characteristics of three Pueraria lobata germplasm lines [J]. Acta Prataculturae Sinica, 2022, 31(7): 220-233. |
[5] | Xiao-fan SUN, Yi-long ZHANG, Pei-ying LI, Zong-jiu SUN. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 69-78. |
[6] | Dong-rong HAN, Tuo YAO, Hai-yun LI, Shu-chao HUANG, Yan-shan YANG, Ya-min GAO, Chang-ning LI, Yin-cui ZHANG. Effects of combined application of microbial fertilizer and chemical fertilizer on the growth of Lolium perenne [J]. Acta Prataculturae Sinica, 2022, 31(3): 136-143. |
[7] | Chun-jie LI, Ming-xiao LANG, Zhen-jiang CHEN, Tai-xiang CHEN, Jing LIU, Yuan-yuan JIN, Xue-kai WEI. Effects of Epichloë endophytic fungi on the germination of grass seeds [J]. Acta Prataculturae Sinica, 2022, 31(3): 192-206. |
[8] | Guo-xiang ZHANG, Wei-leng GUO, Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO. Identification of CAX gene family and expression profile analysis of response to abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2022, 31(12): 106-117. |
[9] | Li ZHOU, Zhi-you WANG, Bao-chun YANG, Sheng-zhen HOU, Feng-shuo ZHANG, Lin-sheng GUI. Effects of dietary neutral detergent fiber on muscle fiber type composition and meat quality characteristics of black Tibetan sheep [J]. Acta Prataculturae Sinica, 2022, 31(11): 75-85. |
[10] | Jia-ju ZHANG, Jie YU, Ming-na LI, Jun-mei KANG, Qing-chuan YANG, Rui-cai LONG. Identification and functional analysis of lncRNA167 and its cleavage product miR167c in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 164-180. |
[11] | Fu-zhi LIU, Ying-fang ZHANG, Yuan CHEN. Effects of exogenous trehalose on growth regulation and total flavonoid content of Glycyrrhiza uralensis seedlings under NaHCO3 stress [J]. Acta Prataculturae Sinica, 2021, 30(7): 148-156. |
[12] | Zhen-song LI, Li-qiang WAN, Shuo LI, Xiang-lin LI. Response of alfalfa root architecture and physiological characteristics to drought and rehydration [J]. Acta Prataculturae Sinica, 2021, 30(1): 189-196. |
[13] | ZHANG Li-xia, CHANG Qing-shan, XUE Xian, LIU Wei, ZHANG Qiao-ming, CHEN Su-dan, ZHENG Yi-qi, LI Jing-lin, CHEN Wan-dong, LI Da-zhao. Effects of acid stress on chlorophyll fluorescence characteristics and root antioxidant activity of Prunella vulgaris [J]. Acta Prataculturae Sinica, 2020, 29(8): 134-142. |
[14] | HOU Jie-ru, DUAN Xiao-yue, LI Zhou, PENG Yan. Cloning and expression analysis of TrSAMDC1 in white clover [J]. Acta Prataculturae Sinica, 2020, 29(8): 170-178. |
[15] | LI Ke, ZHOU Zhuang-yu, LI Si-ju, YAO Hao-zheng, ZHOU Ying, MIAO Yu-jing, TANG Xiao-qing, WANG Kang-cai. Growth, osmotic adjustment and antioxidant capacity responses of Schizonepeta tenuifolia to drought stress [J]. Acta Prataculturae Sinica, 2020, 29(5): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||