Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 118-126.DOI: 10.11686/cyxb2022240
Mei-shan CHEN(), Xian CHEN, Xiao-zhen MAN, Chuang LIU, Jia-lin TONG, Bo QU()
Received:
2022-05-30
Revised:
2022-07-28
Online:
2023-05-20
Published:
2023-03-20
Contact:
Bo QU
Mei-shan CHEN, Xian CHEN, Xiao-zhen MAN, Chuang LIU, Jia-lin TONG, Bo QU. Relationship between plasticity and invasiveness in the anatomical structure of the fine roots of the invasive species Xanthium strumarium[J]. Acta Prataculturae Sinica, 2023, 32(5): 118-126.
处理 Treatments | 高氮高水 High nitrogen high water (NW) | 高氮低水 High nitrogen low water (N) | 低氮高水 Low nitrogen high water (W) | 低氮低水 Low nitrogen low water (0) |
---|---|---|---|---|
养分Nitrogen dosage (g·kg-1) | 0.196 | 0.196 | 0 | 0 |
水分Water dosage (mL·d-1) | 1000 | 200 | 1000 | 200 |
Table 1 Four treatments of X. strumarium and X. sibiricum
处理 Treatments | 高氮高水 High nitrogen high water (NW) | 高氮低水 High nitrogen low water (N) | 低氮高水 Low nitrogen high water (W) | 低氮低水 Low nitrogen low water (0) |
---|---|---|---|---|
养分Nitrogen dosage (g·kg-1) | 0.196 | 0.196 | 0 | 0 |
水分Water dosage (mL·d-1) | 1000 | 200 | 1000 | 200 |
指标Parameter | 低氮低水0 | 高氮低水N | 低氮高水W | 高氮高水NW |
---|---|---|---|---|
根直径Root diameter (μm) | 794.03±51.96ab | 862.52±72.63a | 746.92±76.52b | 856.32±115.22a |
皮层厚度Cortical thickness (μm) | 146.37±18.27b | 196.80±35.87a | 156.17±35.07b | 165.76±36.37b |
中柱直径Stele diameter (μm) | 412.23±37.77a | 367.68±93.30a | 382.62±55.79a | 382.62±55.79a |
内皮层厚度Endodermis thickness (μm) | 21.53±3.48c | 22.99±3.27c | 30.78±6.79b | 41.40±8.37a |
导管直径Xylem diameter (μm) | 22.70±5.14b | 21.85±5.01b | 28.00±5.70a | 24.29±7.53ab |
总气腔面积Total aerenchyma area (μm2) | 43210.20±8782.19a | 47946.31±27169.54a | 58218.06±13587.42a | 52994.21±26575.90a |
Table 2 Differences in each parameter among X. strumarium in different treatments
指标Parameter | 低氮低水0 | 高氮低水N | 低氮高水W | 高氮高水NW |
---|---|---|---|---|
根直径Root diameter (μm) | 794.03±51.96ab | 862.52±72.63a | 746.92±76.52b | 856.32±115.22a |
皮层厚度Cortical thickness (μm) | 146.37±18.27b | 196.80±35.87a | 156.17±35.07b | 165.76±36.37b |
中柱直径Stele diameter (μm) | 412.23±37.77a | 367.68±93.30a | 382.62±55.79a | 382.62±55.79a |
内皮层厚度Endodermis thickness (μm) | 21.53±3.48c | 22.99±3.27c | 30.78±6.79b | 41.40±8.37a |
导管直径Xylem diameter (μm) | 22.70±5.14b | 21.85±5.01b | 28.00±5.70a | 24.29±7.53ab |
总气腔面积Total aerenchyma area (μm2) | 43210.20±8782.19a | 47946.31±27169.54a | 58218.06±13587.42a | 52994.21±26575.90a |
指标Parameter | 低氮低水0 | 高氮低水N | 低氮高水W | 高氮高水NW |
---|---|---|---|---|
根直径Root diameter (μm) | 672.84±21.96b | 838.60±30.50a | 799.80±111.06a | 797.11±95.68a |
皮层厚度Cortical thickness (μm) | 142.75±11.53b | 134.66±12.18bc | 108.92±38.58c | 207.80±15.67a |
中柱直径Stele diameter (μm) | 277.32±13.07b | 499.38±11.70a | 286.81±59.77b | 487.18±7.36a |
内皮层厚度Endodermis thickness (μm) | 15.53±2.42b | 30.01±8.51a | 26.73±6.49a | 31.31±3.08a |
导管直径Xylem diameter (μm) | 19.98±2.45b | 27.40±6.02a | 19.46±5.70b | 28.50±7.22a |
总气腔面积Total aerenchyma area (μm2) | 10559.00±4730.09b | 13310.83±11451.76b | 19912.83±1320.78b | 634486.33±22933.79a |
Table 3 Differences in each parameter among X. sibiricum in different treatments
指标Parameter | 低氮低水0 | 高氮低水N | 低氮高水W | 高氮高水NW |
---|---|---|---|---|
根直径Root diameter (μm) | 672.84±21.96b | 838.60±30.50a | 799.80±111.06a | 797.11±95.68a |
皮层厚度Cortical thickness (μm) | 142.75±11.53b | 134.66±12.18bc | 108.92±38.58c | 207.80±15.67a |
中柱直径Stele diameter (μm) | 277.32±13.07b | 499.38±11.70a | 286.81±59.77b | 487.18±7.36a |
内皮层厚度Endodermis thickness (μm) | 15.53±2.42b | 30.01±8.51a | 26.73±6.49a | 31.31±3.08a |
导管直径Xylem diameter (μm) | 19.98±2.45b | 27.40±6.02a | 19.46±5.70b | 28.50±7.22a |
总气腔面积Total aerenchyma area (μm2) | 10559.00±4730.09b | 13310.83±11451.76b | 19912.83±1320.78b | 634486.33±22933.79a |
1 | Bradshaw A D. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 1965, 13(1): 115-155. |
2 | Sultan S E. Phenotypic plasticity in plants: A case study in ecological development. Evolution & Development, 2003, 5(1): 25-33. |
3 | Alpert P, Simms E L. The relative advantages of plasticity and fixity in different environments: When is it good for a plant to adjust. Evolutionary Ecology, 2002, 16: 285-297. |
4 | Reich P B, Cornelissen H. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 2004, 102: 275-301. |
5 | Grime J P, Mackey J M L. The role of plasticity in resource capture by plants. Evolutionary Ecology, 2002, 16: 299-307. |
6 | Klimesova J, Martinkova J, Herben T. Horizontal growth: An overlooked dimension in plant trait space. Perspectives in Plant Ecology Evolution and Systematics, 2008, 32: 18-21. |
7 | Long Y, Kong D, Chen Z, et al. Variation of the linkage of root function with root branch order. PLoS One, 2013, 8(2): e57153. |
8 | Grossman J D, Rice K J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evolutionary Applications, 2012, 5: 850-857. |
9 | Jagodzinski A M, Kałucka I. Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands. Dendrobiology, 2011, 66: 71-84. |
10 | Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine North American trees. Ecological Monographs, 2002, 72(2): 293-309. |
11 | Du X, Wei X. Definition of fine roots on the basis of the root anatomy, diameter, and branch orders of one-year old Fraxinus mandshurica seedlings. Journal of Forestry Research, 2018, 29: 1321-1327. |
12 | Kloss R B, Castro E M D, Magalhes P C, et al. Anatomical and physiological traits of maize under contrasting water levels and cattail occurrence. Acta Physiologiae Plantarum, 2021, 43(2): 16. |
13 | Colmer T D, Flowers T J. Flooding tolerance in halophytes. New Phytologist, 2008, 179: 964-974. |
14 | Zhai F F, Li H D, Zhang S W, et al. Male and female plants of Salix viminalis perform similarly to flooding in morphology, anatomy, and physiology. Forests, 2020, 11(3): 321. |
15 | Jia W, Ma M, Chen J, et al. Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. International Journal of Molecular Sciences, 2021, 22(3): 1088. |
16 | Turhadi T, Hamim H, Ghulamahdi M, et al. Morpho-physiological and anatomical character changes of rice under waterlogged and water-saturated acidic and high Fe content soil. Sains Malaysiana, 2020, 49(10): 2411-2424. |
17 | Jacobsen A L, Valdovinos-Ayala J, Pratt R B. Functional lifespans of xylem vessels: Development, hydraulic function, and post-function of vessels in several species of woody plants. American Journal of Botany, 2018, 105(2): 142. |
18 | Wang W N, Wang Y, Wang S Z, et al. Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: A review. Chinese Journal of Applied Ecology, 2016, 27(4): 1294-1302. |
王文娜, 王燕, 王韶仲, 等. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响. 应用生态学报, 2016, 27(4): 1294-1302. | |
19 | Chen X. Transgenerational plasticity of Xanthium strumarium and X. sibiricum. Shenyang: Shenyang Agricultural University, 2019. |
陈鲜. 瘤突苍耳和苍耳表型可塑性代间传递的研究. 沈阳: 沈阳农业大学, 2019. | |
20 | Li Z L. Plant production technology. Beijing: Science Press, 1978. |
李正理. 植物制片技术. 北京: 科学出版社, 1978. | |
21 | Kramer-Walter K R, Laughlin D C. Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation. Plant and Soil, 2017, 416: 539-550. |
22 | Xiao S, Liu L, Zhang Y, et al. Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). BMC Plant Biology, 2020, 20(1): 328. |
23 | Pigliucci M, Kolodynska A. Phenotypic plasticity and integration in response to flooded conditions in natural accessions of Arabidopsis thaliana (L.) Heynh (Brassicaceae). Annals of Botany, 2002, 90(2): 199-207. |
24 | Travlos I S. Responses of invasive silverleaf nightshade (Solanum elaeagnifolium) populations to varying soil water availability. Phytoparasitica, 2003, 41: 41-48. |
25 | Poonam T, Dipali S, Abhishek S C, et al. Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes. Ecotoxicology and Environmental Safety, 2021, 207: 111252. |
26 | Yamauchi T, Abe F, Tsutsumi N, et al. Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Frontiers in Plant Science, 2019, 10: 259. |
27 | Postma J A, Lynch J P. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium.Plant Physiology, 2011, 156(3): 1190-1201. |
28 | Yamauchi T, Noshita K, Tsutsumi N. Climate-smart crops: Key root anatomical traits that confer flooding tolerance.Breed Science, 2021, 71: 51-61. |
29 | Huang Y X, Zhao X Y, Zhang H X, et al. A comparison of phenotypic plasticity between two species occupying different positions in a successional sequence. Ecological Research, 2009, 24: 1335-1344. |
30 | Hazman M, Brown K M. Progressive drought alters architectural and anatomical traits of rice roots. Rice, 2018, 11(1): 62. |
31 | Ouyang W, Yin X, Yang J, et al. Comparisons with wheat reveal root anatomical and histochemical constraints of rice under water-deficit stress. Plant and Soil, 2020, 452(1): 547-568. |
32 | Ma F S, Carol A P. Plasmodesmata: Dynamic channels for symplastic transport. Journal of Integrative Plant Biology, 2001, 43(5): 441-460. |
马丰山, Carol A P. 胞间连丝: 共质体运输的动态通道. 植物学报, 2001, 43(5): 441-460. |
[1] | JIANG Han-yu, WANG Ya-feng, XU Ming, GAN Pei-wen, ZHANG Jin-lin, MA Hui-ling. Effects of ethylene on the ascorbate-glutathione cycle and callose deposition in ISR disease-resistance reaction in creeping bentgrass [J]. Acta Prataculturae Sinica, 2018, 27(9): 120-131. |
[2] | ZHAO Wei, WANG Yan-Jie, LI Ya-Ge. The eco-physiological responses of invasive plants to defoliation in grassland: patterns, mechanisms and research prospects [J]. Acta Prataculturae Sinica, 2017, 26(6): 195-202. |
[3] | LIU Xing-Ju, MA Yuan, MA Hui-Ling, ZHANG Yong-Mei, YU Qian-Qian. The correlation between cell microstructure induced by 2,3-butanediol and fungal resistance of creeping bentgrass [J]. Acta Prataculturae Sinica, 2017, 26(12): 170-178. |
[4] | ZHAO Xiaohong, YANG Dianlin, WANG Hui, LIU Hongmei, QU Bo, HUANGFU Chaohe. Effects of Flaveria bidentis invasion on soil nitrogen cycling and soil microbial biomass in different regions [J]. Acta Prataculturae Sinica, 2015, 24(2): 62-69. |
[5] | KANG Sarula, NIU Jian-ming, ZHANG Qing, CHEN Li-ping. Anatomical structure of Stipa breviflora leaves and its relationship with environmental factors [J]. Acta Prataculturae Sinica, 2013, 22(1): 77-86. |
[6] | WANG Rui, WAN Fang-hao. Prediction of the potential survival area of Xanthium italicum in China [J]. Acta Prataculturae Sinica, 2010, 19(6): 222-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||