Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (9): 104-115.DOI: 10.11686/cyxb2022431
Xuan-shuai LIU(), Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG()
Received:
2022-11-02
Revised:
2023-01-13
Online:
2023-09-20
Published:
2023-07-12
Contact:
Qian-bing ZHANG
Xuan-shuai LIU, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG. Dry matter yield and spatial distribution characteristics of phosphorus in alfalfa under bacterial-phosphorus coupling[J]. Acta Prataculturae Sinica, 2023, 32(9): 104-115.
项目 Item | Pa (%) | Ps (%) | Pl (%) | Pf (%) | Pr (%) | Pu (%) | Pm (%) | Pd (%) | Apr (mg·kg-1) | APn (mg·kg-1) | DMY (g·pot-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
茬次Cut | |||||||||||
第1茬First cut | 0.236 | 0.180 | 0.320 | 0.394 | 0.306 | 0.356 | 0.290 | 0.260 | 35.493 | 27.119 | 12.107 |
第2茬Second cut | 0.237 | 0.174 | 0.241 | 0.401 | 0.232 | 0.227 | 0.212 | 0.199 | 29.541 | 14.752 | 15.828 |
第3茬Third cut | 0.201 | 0.158 | 0.280 | 0.344 | 0.190 | 0.254 | 0.211 | 0.188 | 15.227 | 11.040 | 15.639 |
标准误Standard error | 0.012 | 0.007 | 0.023 | 0.018 | 0.034 | 0.039 | 0.026 | 0.022 | 6.014 | 4.861 | 1.210 |
磷Phosphorus (P) | |||||||||||
P0 | 0.200 | 0.152 | 0.258 | 0.347 | 0.226 | 0.259 | 0.226 | 0.201 | 19.247 | 14.949 | 13.521 |
P1 | 0.250 | 0.190 | 0.303 | 0.412 | 0.260 | 0.299 | 0.250 | 0.230 | 34.261 | 20.325 | 15.529 |
标准误Standard error | 0.025 | 0.019 | 0.023 | 0.033 | 0.017 | 0.020 | 0.012 | 0.015 | 7.507 | 2.688 | 1.004 |
菌Bacteria (J) | |||||||||||
J1 | 0.221 | 0.164 | 0.275 | 0.362 | 0.216 | 0.247 | 0.213 | 0.199 | 27.388 | 17.409 | 14.740 |
J2 | 0.216 | 0.173 | 0.280 | 0.368 | 0.209 | 0.271 | 0.230 | 0.216 | 28.267 | 16.743 | 15.177 |
J3 | 0.230 | 0.167 | 0.270 | 0.393 | 0.269 | 0.268 | 0.239 | 0.220 | 26.598 | 18.034 | 14.967 |
J4 | 0.217 | 0.166 | 0.280 | 0.361 | 0.249 | 0.290 | 0.242 | 0.200 | 25.563 | 16.469 | 15.075 |
J5 | 0.239 | 0.183 | 0.296 | 0.414 | 0.270 | 0.320 | 0.264 | 0.242 | 25.953 | 19.529 | 12.665 |
标准误Standard error | 0.004 | 0.003 | 0.004 | 0.010 | 0.013 | 0.012 | 0.008 | 0.008 | 0.489 | 0.546 | 0.471 |
P值P-values | |||||||||||
茬次Cut | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
菌Bacteria (J) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
磷Phosphorus (P) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×菌Cut×J | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.071 |
茬次×磷Cut×P | <0.001 | <0.001 | 0.940 | 0.012 | <0.001 | 0.123 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
菌×磷J×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.746 |
茬次×菌×磷Cut×J×P | <0.001 | <0.001 | <0.001 | 0.023 | <0.001 | <0.001 | <0.001 | <0.001 | 0.010 | <0.001 | 0.204 |
Table 1 Main effect means and statistical analysis results of phosphorus content related indexes of alfalfa
项目 Item | Pa (%) | Ps (%) | Pl (%) | Pf (%) | Pr (%) | Pu (%) | Pm (%) | Pd (%) | Apr (mg·kg-1) | APn (mg·kg-1) | DMY (g·pot-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
茬次Cut | |||||||||||
第1茬First cut | 0.236 | 0.180 | 0.320 | 0.394 | 0.306 | 0.356 | 0.290 | 0.260 | 35.493 | 27.119 | 12.107 |
第2茬Second cut | 0.237 | 0.174 | 0.241 | 0.401 | 0.232 | 0.227 | 0.212 | 0.199 | 29.541 | 14.752 | 15.828 |
第3茬Third cut | 0.201 | 0.158 | 0.280 | 0.344 | 0.190 | 0.254 | 0.211 | 0.188 | 15.227 | 11.040 | 15.639 |
标准误Standard error | 0.012 | 0.007 | 0.023 | 0.018 | 0.034 | 0.039 | 0.026 | 0.022 | 6.014 | 4.861 | 1.210 |
磷Phosphorus (P) | |||||||||||
P0 | 0.200 | 0.152 | 0.258 | 0.347 | 0.226 | 0.259 | 0.226 | 0.201 | 19.247 | 14.949 | 13.521 |
P1 | 0.250 | 0.190 | 0.303 | 0.412 | 0.260 | 0.299 | 0.250 | 0.230 | 34.261 | 20.325 | 15.529 |
标准误Standard error | 0.025 | 0.019 | 0.023 | 0.033 | 0.017 | 0.020 | 0.012 | 0.015 | 7.507 | 2.688 | 1.004 |
菌Bacteria (J) | |||||||||||
J1 | 0.221 | 0.164 | 0.275 | 0.362 | 0.216 | 0.247 | 0.213 | 0.199 | 27.388 | 17.409 | 14.740 |
J2 | 0.216 | 0.173 | 0.280 | 0.368 | 0.209 | 0.271 | 0.230 | 0.216 | 28.267 | 16.743 | 15.177 |
J3 | 0.230 | 0.167 | 0.270 | 0.393 | 0.269 | 0.268 | 0.239 | 0.220 | 26.598 | 18.034 | 14.967 |
J4 | 0.217 | 0.166 | 0.280 | 0.361 | 0.249 | 0.290 | 0.242 | 0.200 | 25.563 | 16.469 | 15.075 |
J5 | 0.239 | 0.183 | 0.296 | 0.414 | 0.270 | 0.320 | 0.264 | 0.242 | 25.953 | 19.529 | 12.665 |
标准误Standard error | 0.004 | 0.003 | 0.004 | 0.010 | 0.013 | 0.012 | 0.008 | 0.008 | 0.489 | 0.546 | 0.471 |
P值P-values | |||||||||||
茬次Cut | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
菌Bacteria (J) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
磷Phosphorus (P) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×菌Cut×J | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.071 |
茬次×磷Cut×P | <0.001 | <0.001 | 0.940 | 0.012 | <0.001 | 0.123 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
菌×磷J×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.746 |
茬次×菌×磷Cut×J×P | <0.001 | <0.001 | <0.001 | 0.023 | <0.001 | <0.001 | <0.001 | <0.001 | 0.010 | <0.001 | 0.204 |
处理 Treatment | 干物质产量Dry matter yield (g·pot-1) | 总干物质产量 Total dry matter yield (g·pot-1) | 磷素利用效率 Phosphorus use efficiency (%) | |||
---|---|---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第3茬Third cut | ||||
J1P0 | 10.90±0.62Bb | 16.37±1.30Aa | 13.93±1.07Ab | 41.20 | - | |
J1P1 | 12.45±1.96Ba | 16.67±0.90Aa | 18.12±2.03Aa | 47.24 | 20.13 | |
J2P0 | 13.13±0.95Aa | 15.87±1.31ABa | 13.72±0.47Ab | 42.72 | - | |
J2P1 | 14.08±0.32Aa | 16.23±1.26Aa | 18.03±0.80ABa | 48.34 | 18.73 | |
J3P0 | 13.03±0.38Aa | 14.25±0.55ABb | 14.95±1.04Ab | 42.23 | - | |
J3P1 | 13.55±1.11ABa | 16.95±2.46Aa | 17.07±1.95ABa | 47.57 | 17.80 | |
J4P0 | 10.60±2.04Bb | 16.87±2.28Aa | 13.67±1.38Ab | 41.14 | - | |
J4P1 | 14.28±0.49Aa | 17.05±3.78Aa | 17.98±1.94ABa | 49.31 | 27.23 | |
J5P0 | 8.90±1.07Ca | 13.55±1.59Ba | 13.07±0.31Ab | 35.52 | - | |
J5P1 | 10.15±0.24Ca | 14.47±1.83Aa | 15.85±0.53Ba | 40.47 | 16.50 |
Table 2 Dry matter yield and phosphorus use efficiency of alfalfa under different treatments
处理 Treatment | 干物质产量Dry matter yield (g·pot-1) | 总干物质产量 Total dry matter yield (g·pot-1) | 磷素利用效率 Phosphorus use efficiency (%) | |||
---|---|---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第3茬Third cut | ||||
J1P0 | 10.90±0.62Bb | 16.37±1.30Aa | 13.93±1.07Ab | 41.20 | - | |
J1P1 | 12.45±1.96Ba | 16.67±0.90Aa | 18.12±2.03Aa | 47.24 | 20.13 | |
J2P0 | 13.13±0.95Aa | 15.87±1.31ABa | 13.72±0.47Ab | 42.72 | - | |
J2P1 | 14.08±0.32Aa | 16.23±1.26Aa | 18.03±0.80ABa | 48.34 | 18.73 | |
J3P0 | 13.03±0.38Aa | 14.25±0.55ABb | 14.95±1.04Ab | 42.23 | - | |
J3P1 | 13.55±1.11ABa | 16.95±2.46Aa | 17.07±1.95ABa | 47.57 | 17.80 | |
J4P0 | 10.60±2.04Bb | 16.87±2.28Aa | 13.67±1.38Ab | 41.14 | - | |
J4P1 | 14.28±0.49Aa | 17.05±3.78Aa | 17.98±1.94ABa | 49.31 | 27.23 | |
J5P0 | 8.90±1.07Ca | 13.55±1.59Ba | 13.07±0.31Ab | 35.52 | - | |
J5P1 | 10.15±0.24Ca | 14.47±1.83Aa | 15.85±0.53Ba | 40.47 | 16.50 |
指标 Index | 总干物质产量 Total dry matter yield | 苜蓿植株磷含量P content in alfalfa | 根际土壤有效磷含量 Available P content of rhizosphere soil | 非根际土壤有效磷含量 Available P content of non-rhizosphere soil |
---|---|---|---|---|
苜蓿植株磷含量P content in alfalfa | 0.460 | |||
根际土壤有效磷含量Available P content of rhizosphere soil | 0.777** | 0.838** | ||
非根际土壤有效磷含量Available P content of non-rhizosphere soil | 0.652* | 0.623* | 0.841** | |
磷素利用效率P use efficiency | 0.784** | 0.835** | 0.955** | 0.845** |
Table 3 Correlation analysis of each index
指标 Index | 总干物质产量 Total dry matter yield | 苜蓿植株磷含量P content in alfalfa | 根际土壤有效磷含量 Available P content of rhizosphere soil | 非根际土壤有效磷含量 Available P content of non-rhizosphere soil |
---|---|---|---|---|
苜蓿植株磷含量P content in alfalfa | 0.460 | |||
根际土壤有效磷含量Available P content of rhizosphere soil | 0.777** | 0.838** | ||
非根际土壤有效磷含量Available P content of non-rhizosphere soil | 0.652* | 0.623* | 0.841** | |
磷素利用效率P use efficiency | 0.784** | 0.835** | 0.955** | 0.845** |
处理 Treatment | 植株磷含量 Phosphorus content in alfalfa | 非根际土壤有效磷含量 Available phosphorus content in non-rhizosphere soil | 根际土壤有效磷含量 Available phosphorus content in rhizosphere soil | 干物质产量 Dry matter yield | 磷素利用效率 Phosphorus use efficiency | 平均值 Average | 排序 Rank |
---|---|---|---|---|---|---|---|
J1P0 | 0.138 | 0.000 | 0.000 | 0.412 | 0.000 | 0.110 | 10 |
J1P1 | 0.813 | 0.590 | 1.000 | 0.850 | 0.739 | 0.798 | 1 |
J2P0 | 0.000 | 0.003 | 0.258 | 0.522 | 0.000 | 0.157 | 7 |
J2P1 | 0.813 | 0.437 | 0.832 | 0.930 | 0.688 | 0.740 | 5 |
J3P0 | 0.263 | 0.014 | 0.078 | 0.487 | 0.000 | 0.168 | 6 |
J3P1 | 0.900 | 0.717 | 0.841 | 0.874 | 0.654 | 0.797 | 2 |
J4P0 | 0.200 | 0.003 | 0.014 | 0.408 | 0.000 | 0.125 | 8 |
J4P1 | 0.638 | 0.375 | 0.799 | 1.000 | 1.000 | 0.762 | 3 |
J5P0 | 0.413 | 0.081 | 0.070 | 0.000 | 0.000 | 0.113 | 9 |
J5P1 | 1.000 | 1.000 | 0.785 | 0.359 | 0.606 | 0.750 | 4 |
Table 4 Membership function analysis of each index under different treatments
处理 Treatment | 植株磷含量 Phosphorus content in alfalfa | 非根际土壤有效磷含量 Available phosphorus content in non-rhizosphere soil | 根际土壤有效磷含量 Available phosphorus content in rhizosphere soil | 干物质产量 Dry matter yield | 磷素利用效率 Phosphorus use efficiency | 平均值 Average | 排序 Rank |
---|---|---|---|---|---|---|---|
J1P0 | 0.138 | 0.000 | 0.000 | 0.412 | 0.000 | 0.110 | 10 |
J1P1 | 0.813 | 0.590 | 1.000 | 0.850 | 0.739 | 0.798 | 1 |
J2P0 | 0.000 | 0.003 | 0.258 | 0.522 | 0.000 | 0.157 | 7 |
J2P1 | 0.813 | 0.437 | 0.832 | 0.930 | 0.688 | 0.740 | 5 |
J3P0 | 0.263 | 0.014 | 0.078 | 0.487 | 0.000 | 0.168 | 6 |
J3P1 | 0.900 | 0.717 | 0.841 | 0.874 | 0.654 | 0.797 | 2 |
J4P0 | 0.200 | 0.003 | 0.014 | 0.408 | 0.000 | 0.125 | 8 |
J4P1 | 0.638 | 0.375 | 0.799 | 1.000 | 1.000 | 0.762 | 3 |
J5P0 | 0.413 | 0.081 | 0.070 | 0.000 | 0.000 | 0.113 | 9 |
J5P1 | 1.000 | 1.000 | 0.785 | 0.359 | 0.606 | 0.750 | 4 |
1 | Parihar M, Meena V S, Mishra P K, et al. Arbuscular mycorrhiza: a viable strategy for soil nutrient loss reduction. Archives of Microbiology, 2019, 201(6): 723-735. |
2 | Nobile C M, Bravin M N, Becquer T, et al. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 2020, 239: 124709. |
3 | Friesen M L, Porter S S, Stark S C, et al. Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics, 2011, 42: 23-46. |
4 | Sun Y M, Zhang Q B, Miao X R, et al. Effects of phosphorus-solubilizing bacteria and arbuscular mycorrhizal fungi on production performance and root biomass of alfalfa. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242. |
孙艳梅, 张前兵, 苗晓茸, 等. 解磷细菌和丛枝菌根真菌对紫花苜蓿生产性能及地下生物量的影响. 中国农业科学, 2019, 52(13): 2230-2242. | |
5 | Willmann M, Gerlach N, Buer B, et al. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in Plant Science, 2013, 4: 533. |
6 | Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics from soil to plant. Plant Physiology, 2011, 156: 997-1005. |
7 | Peng Q, He H H, Zhang X C. Mechanisms of increasing alfalfa growth and phosphorus uptake by inoculation with arbuscular mycorrhizal fungal under low phosphorus application level. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 293-300. |
彭琪, 何红花, 张兴昌. 低磷环境下接种丛枝菌根真菌促进紫花苜蓿生长和磷素吸收的机理. 植物营养与肥料学报, 2021, 27(2): 293-300. | |
8 | Osonubi O. Comparative effects of vesicular-arbuscular mycorrhizal inoculation and phosphorus fertilization on growth and phosphorus uptake of maize (Zea mays L.) and sorghum (Sorghum bicolor L.) plants under drought-stressed conditions. Biology and Fertility of Soils, 1994, 18(1): 55-59. |
9 | Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment, 2018, 612: 522-537. |
10 | Son H J, Park G T, Cha M S, et al. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 2006, 97(2): 204-210. |
11 | Ogut M, Er F. Mineral composition of field grown winter wheat inoculated with phosphorus solubilizing bacteria at different plant growth stages. Journal of Plant Nutrition, 2016, 39(4): 479-490. |
12 | Liu J Y, Liu X S, Zhang Q B, et al. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express, 2020, 10(1): 1-13. |
13 | Fu X F, Zhang G P, Zhang X W, et al. Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var.mairei seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 353-360. |
付晓峰, 张桂萍, 张小伟, 等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响. 西北植物学报, 2016, 36(2): 353-360. | |
14 | Xinjiang Production and Construction Corps Soil Census Office. Xinjiang production and construction corps reclamation area soil. Urumqi: Xinjiang Science and Technology Health Press, 1993. |
新疆生产建设兵团土壤普查办公室. 新疆生产建设兵团垦区土壤. 乌鲁木齐: 新疆科技卫生出版社, 1993. | |
15 | Bao S D. Methods of soil agricultural chemical analysis (3rd Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
16 | Ma Q, Liu X Y, Ran J Y, et al. Improving phosphorus use efficiency of spring maize by reducing phosphate fertilizer rate and replacing urea with ammonium sulfate in dryland of Northwest China. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1047-1058. |
马琴, 刘小雨, 冉瑾怡, 等. 磷肥减量结合硫酸铵配施提高西北地区旱地春玉米磷素利用效率. 植物营养与肥料学报, 2020, 26(6): 1047-1058. | |
17 | Jiang C, Li X, Zou J, et al. Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC Plant Biology, 2021, 21(1): 1-14. |
18 | Liu J Y, Hui J F, Sun M Y, et al. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149. |
刘俊英, 回金峰, 孙梦瑶, 等. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响. 农业工程学报, 2020, 36(19): 142-149. | |
19 | Bender S F, Heijden V D M G A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. Journal of Applied Ecology, 2015, 52(1): 228-239. |
20 | Ezawa T, Cavagnaro T R, Smith S E, et al. Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytologist, 2004, 161(2): 387-392. |
21 | Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62: 227-250. |
22 | Shan L W, Zhang Q, Zhu R F, et al. Effects of AMF on growth and photosynthetic physiological characteristics of Leymus chinensis and Medicago sativa with and without nitrogen and phosphorus application. Acta Prataculturae Sinica, 2020, 29(8): 46-57. |
单立文, 张强, 朱瑞芬, 等. 氮、磷添加下AMF对羊草和苜蓿生长与光合生理特性的影响. 草业学报, 2020, 29(8): 46-57. | |
23 | Xue Y L, Li C Y, Wang C R, et al. Mechanisms of phosphorus uptake from soils by arbuscular mycorrhizal fungi. Journal of Soil and Water Conservation, 2019, 33(6): 10-20. |
薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制. 水土保持学报, 2019, 33(6): 10-20. | |
24 | Zhang L, Fan J, Ding X, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology and Biochemistry, 2014, 74: 177-183. |
25 | Li H S. Modern plant physiology (3rd Edition). Beijing: Higher Education Press, 2012. |
李合生. 现代植物生理学(第3版). 北京: 高等教育出版社, 2012. | |
26 | Liu J, Yang J J. Molecular speciation of phosphorus in agricultural soils: advances over the last 30 years. Acta Pedologica Sinica, 2021, 58(3): 558-567. |
刘瑾, 杨建军. 近三十年农田土壤磷分子形态的研究进展. 土壤学报, 2021, 58(3): 558-567. | |
27 | Li N, Yang J F, Liu H J, et al. Response of soil phosphorus to P balance under long-term rotation and fertilization in brown soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1697-1703. |
李娜, 杨劲峰, 刘侯俊, 等. 长期轮作施肥棕壤磷素对磷盈亏的响应. 植物营养与肥料学报, 2018, 24(6): 1697-1703. | |
28 | Rodríguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 2006, 287(1): 15-21. |
29 | Lin Q M. Interference of soil soluble inorganic P in measurement of soil microbial biomass P. Acta Ecologica Sinica, 2001, 21(6): 993-996. |
林启美. 土壤可溶性无机磷对微生物生物量磷测定的干扰. 生态学报, 2001, 21(6): 993-996. | |
30 | Hussain S, Sharif M, Ahmad W. Selection of efficient phosphorus solubilizing bacteria strains and mycorrhizae for enhanced cereal growth, root microbe status and N and P uptake in alkaline calcareous soil. Soil Science and Plant Nutrition, 2021, 67(3): 259-268. |
31 | Schröder J J, Smit A L, Cordell D, et al. Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere, 2011, 84(6): 822-831. |
[1] | Rui XU, Zheng WANG, Yi-ming WANG, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effect of alfalfa on the yield and sucrose metabolism of rice in an alfalfa-rice rotation system [J]. Acta Prataculturae Sinica, 2023, 32(8): 129-140. |
[2] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[3] | Wen-qing LING, Lei ZHANG, Jue LI, Qi-xian FENG, Yan LI, Yi ZHOU, Yi-jia LIU, Fu-lin YANG, Jing ZHOU. Effects of Lentilactobacillus buchneri combined with different sugars on nutrient composition, fermentation quality, rumen degradation rate, and aerobic stability of alfalfa silage [J]. Acta Prataculturae Sinica, 2023, 32(7): 122-134. |
[4] | Shao-peng WANG, Jia LIU, Jun HONG, Ji-zhen LIN, Yi ZHANG, Kun SHI, Zan WANG. Cloning and function analysis of MsPPR1 in alfalfa under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
[5] | Xiao-xia AN, Ying-ying ZHANG, Chun-hui MA, Man LI, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi on alfalfa yield and phosphorus use efficiency [J]. Acta Prataculturae Sinica, 2023, 32(6): 71-84. |
[6] | Ting YE, Xiao-juan WU, Yi-xiao LU, Sheng-juan LIU, Zhuo-hui JIANG, Hui-min YANG. Effect of planting ratio on the stability of forage yield and population density in two alfalfa-grass mixtures [J]. Acta Prataculturae Sinica, 2023, 32(5): 127-137. |
[7] | Shi-min ZHANG, Jiao-yang ZHAO, Hui-sen ZHU, Kai WEI, Yong-xin WANG. Effects of selenium on metabolic transformation and morphogenesis in different varieties of alfalfa during the germination stage [J]. Acta Prataculturae Sinica, 2023, 32(4): 79-90. |
[8] | Yuan WANG, Jing WANG, Shu-xia LI. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance [J]. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
[9] | Shou-jiang SUN, Yi-han TANG, Wen MA, Man-li LI, Pei-sheng MAO. Response of the mitochondrial AsA-GSH cycle during alfalfa seed germination under low temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 152-162. |
[10] | Xuan-shuai LIU, Yan-liang SUN, Xiao-xia AN, Chun-hui MA, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics and biomass of alfalfa [J]. Acta Prataculturae Sinica, 2023, 32(3): 189-199. |
[11] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[12] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[13] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
[14] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[15] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||