Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (9): 1-16.DOI: 10.11686/cyxb2022405
Zhi-gui YANG1(), Jian-guo ZHANG1, Jin-rong LI2, Hong-yan YU3, Li CHANG4, Shu-hua YI1, Yan-yan LYU1, Yu-zhuo ZHANG1, Bao-ping MENG1()
Received:
2022-10-10
Revised:
2022-11-28
Online:
2023-09-20
Published:
2023-07-12
Contact:
Bao-ping MENG
Zhi-gui YANG, Jian-guo ZHANG, Jin-rong LI, Hong-yan YU, Li CHANG, Shu-hua YI, Yan-yan LYU, Yu-zhuo ZHANG, Bao-ping MENG. Spatiotemporal dynamic variation of temperate grassland classes in Inner Mongolia in the last 20 years[J]. Acta Prataculturae Sinica, 2023, 32(9): 1-16.
草地类型 Grassland classes | 生活型 Vegetation life form | 优势种 Dominant grass species | 草地盖度 Coverage (%) |
---|---|---|---|
荒漠 Desert | 超旱生小灌木、小半灌木Extremely xerophytic short shrubs, short semishrubs | 珍珠、松叶猪毛菜、红砂、盐爪爪、沙蒿、沙竹Lyonia ovalifolia, Salsola laricifolia,Reaumuria songarica, Kalidium foliatum,Artemisia desertorum, Psammochloa villosa | 0~20 |
草原化荒漠 Steppe desert | 强旱生半灌木和灌木、旱生草本Super xerophytic semishrubs, shrubs, and xerophytic grasses | 纤细绢蒿、白茎绢蒿、博洛塔绢蒿、合头草、琵琶柴、短叶假木贼、沙生针茅Seriphidium gracilescens, Seriphidium terrae-albae,Seriphidium borotalense, Sympegma regelii,Reaumuria soongorica, Anabasis brevifolia,Stipa glareosa | 20~30 |
荒漠化草原 Desert steppe | 强旱生多年生草本植物、旱生小半灌木Super xerophytic perennial grasses, xerophytic short semishrubs | 石生针茅、戈壁针茅、短花针茅、无芒隐子草、冷蒿、多茎葱、蒙古葱Stipa tianschanica var. klemenzii, Stipa tianschanica var. gobica, Stipa breviflora, Cleistogenessongorica, Artemisia frigida, Allium mongolicum,Allium aflatunense | 30~40 |
典型草原 Typical steppe | 旱生多年生丛生禾草、旱生小灌木Xerophytic perennial tufted grasses, xerophytic short shrubs | 大针茅、克氏针茅、本氏针茅、糙隐子草、冰草、冷蒿、锦鸡儿Stipa grandis, Stipa krylovii, Stipa bungeana,Cleistogenes squarrosa, Agropyron cristatum,A. frigida, Caragana sinica | 60~70 |
草甸草原 Meadow steppe | 中旱生多年生丛生禾草及根茎禾草Mesoxerophytic perennial tufted grasses and root grasses | 贝加尔针茅、羊草、线叶菊Stipa baicalensis, Leymus chinensis,Filifolium sibiricum | 70~90 |
Table 1 Characteristics of different grassland classes in temperate steppe
草地类型 Grassland classes | 生活型 Vegetation life form | 优势种 Dominant grass species | 草地盖度 Coverage (%) |
---|---|---|---|
荒漠 Desert | 超旱生小灌木、小半灌木Extremely xerophytic short shrubs, short semishrubs | 珍珠、松叶猪毛菜、红砂、盐爪爪、沙蒿、沙竹Lyonia ovalifolia, Salsola laricifolia,Reaumuria songarica, Kalidium foliatum,Artemisia desertorum, Psammochloa villosa | 0~20 |
草原化荒漠 Steppe desert | 强旱生半灌木和灌木、旱生草本Super xerophytic semishrubs, shrubs, and xerophytic grasses | 纤细绢蒿、白茎绢蒿、博洛塔绢蒿、合头草、琵琶柴、短叶假木贼、沙生针茅Seriphidium gracilescens, Seriphidium terrae-albae,Seriphidium borotalense, Sympegma regelii,Reaumuria soongorica, Anabasis brevifolia,Stipa glareosa | 20~30 |
荒漠化草原 Desert steppe | 强旱生多年生草本植物、旱生小半灌木Super xerophytic perennial grasses, xerophytic short semishrubs | 石生针茅、戈壁针茅、短花针茅、无芒隐子草、冷蒿、多茎葱、蒙古葱Stipa tianschanica var. klemenzii, Stipa tianschanica var. gobica, Stipa breviflora, Cleistogenessongorica, Artemisia frigida, Allium mongolicum,Allium aflatunense | 30~40 |
典型草原 Typical steppe | 旱生多年生丛生禾草、旱生小灌木Xerophytic perennial tufted grasses, xerophytic short shrubs | 大针茅、克氏针茅、本氏针茅、糙隐子草、冰草、冷蒿、锦鸡儿Stipa grandis, Stipa krylovii, Stipa bungeana,Cleistogenes squarrosa, Agropyron cristatum,A. frigida, Caragana sinica | 60~70 |
草甸草原 Meadow steppe | 中旱生多年生丛生禾草及根茎禾草Mesoxerophytic perennial tufted grasses and root grasses | 贝加尔针茅、羊草、线叶菊Stipa baicalensis, Leymus chinensis,Filifolium sibiricum | 70~90 |
土地覆盖 Land cover | MCD12Q1产品类型 Types of MCD12Q1 |
---|---|
草地Grassland | 稠密灌丛Dense shrub (6)、稀疏灌丛Sparse shrubs (7)、草地Grassland (10)、永久湿地Permanent wetland (11)、稀疏植被Sparse vegetation (16) |
林地Forest | 常绿针叶林Evergreen coniferous forest (1)、常绿阔叶林Broad-leaved evergreen forest (2)、落叶针叶林Deciduous needle-leaf forest (3)、落叶阔叶林Deciduous broadleaved forest (4)、混交林Mixed forest (5)、木本热带稀树草原Woody tropical savanna (8)、热带稀树草原Tropical savanna (9) |
水体Water bodies | 水Water (17) |
永久冰雪Permanent snow and ice | 雪和冰Snow and ice (15) |
其他Others | 农用地Agricultural land (12)、城市和建筑区Cities and building areas (13)、农用地和自然植被Agricultural land and natural vegetation (14) |
Table 2 Scheme of land cover types reclassification
土地覆盖 Land cover | MCD12Q1产品类型 Types of MCD12Q1 |
---|---|
草地Grassland | 稠密灌丛Dense shrub (6)、稀疏灌丛Sparse shrubs (7)、草地Grassland (10)、永久湿地Permanent wetland (11)、稀疏植被Sparse vegetation (16) |
林地Forest | 常绿针叶林Evergreen coniferous forest (1)、常绿阔叶林Broad-leaved evergreen forest (2)、落叶针叶林Deciduous needle-leaf forest (3)、落叶阔叶林Deciduous broadleaved forest (4)、混交林Mixed forest (5)、木本热带稀树草原Woody tropical savanna (8)、热带稀树草原Tropical savanna (9) |
水体Water bodies | 水Water (17) |
永久冰雪Permanent snow and ice | 雪和冰Snow and ice (15) |
其他Others | 农用地Agricultural land (12)、城市和建筑区Cities and building areas (13)、农用地和自然植被Agricultural land and natural vegetation (14) |
指标Index | 重要性Importance | 累计贡献度Cumulative contribution | 指标Index | 重要性Importance | 累计贡献度Cumulative contribution |
---|---|---|---|---|---|
Pre_max | 8.46 | 8.46 | Pre_mea | 2.91 | 82.43 |
Tem_med | 8.07 | 16.53 | NDVI_min | 2.30 | 84.72 |
Pre_ran | 7.05 | 23.57 | Pre_min | 1.99 | 86.72 |
Tem_max | 6.98 | 30.56 | NDVI_ran | 1.88 | 88.60 |
Tem_mea | 6.31 | 36.86 | Tem_std | 1.75 | 90.35 |
Tem_sum | 6.30 | 43.17 | Slope | 1.52 | 91.87 |
Tem_min | 5.87 | 49.04 | NDVI_std | 1.49 | 93.36 |
Pre_std | 4.90 | 53.94 | Tem_ran | 1.48 | 94.84 |
NDVI_mea | 4.22 | 58.16 | Clay1 | 1.15 | 95.99 |
NDVI_sum | 4.07 | 62.23 | Sand1 | 1.08 | 97.06 |
Pre_sum | 3.77 | 66.00 | Aspect | 0.96 | 98.03 |
NDVI_max | 3.63 | 69.63 | Sand2 | 0.95 | 98.98 |
NDVI_med | 3.42 | 73.05 | Clay2 | 0.80 | 99.77 |
DEM | 3.39 | 76.44 | Posi | 0.23 | 100.00 |
Pre_med | 3.08 | 79.52 |
Table 3 Importance and cumulative contribution of NDVI characteristics indices (%)
指标Index | 重要性Importance | 累计贡献度Cumulative contribution | 指标Index | 重要性Importance | 累计贡献度Cumulative contribution |
---|---|---|---|---|---|
Pre_max | 8.46 | 8.46 | Pre_mea | 2.91 | 82.43 |
Tem_med | 8.07 | 16.53 | NDVI_min | 2.30 | 84.72 |
Pre_ran | 7.05 | 23.57 | Pre_min | 1.99 | 86.72 |
Tem_max | 6.98 | 30.56 | NDVI_ran | 1.88 | 88.60 |
Tem_mea | 6.31 | 36.86 | Tem_std | 1.75 | 90.35 |
Tem_sum | 6.30 | 43.17 | Slope | 1.52 | 91.87 |
Tem_min | 5.87 | 49.04 | NDVI_std | 1.49 | 93.36 |
Pre_std | 4.90 | 53.94 | Tem_ran | 1.48 | 94.84 |
NDVI_mea | 4.22 | 58.16 | Clay1 | 1.15 | 95.99 |
NDVI_sum | 4.07 | 62.23 | Sand1 | 1.08 | 97.06 |
Pre_sum | 3.77 | 66.00 | Aspect | 0.96 | 98.03 |
NDVI_max | 3.63 | 69.63 | Sand2 | 0.95 | 98.98 |
NDVI_med | 3.42 | 73.05 | Clay2 | 0.80 | 99.77 |
DEM | 3.39 | 76.44 | Posi | 0.23 | 100.00 |
Pre_med | 3.08 | 79.52 |
草地类型 Grassland classes | 随机森林RF | 支持向量机SVM | 人工神经网络ANN | |||
---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
草甸草原Meadow steppe | 64.29 | 77.14 | 85.00 | 80.95 | 65.71 | 65.71 |
典型草原Typical steppe | 89.27 | 78.02 | 81.58 | 65.22 | 82.22 | 81.32 |
荒漠化草原Desert steppe | 78.00 | 88.64 | 75.53 | 75.00 | 71.43 | 68.18 |
草原化荒漠Steppe desert | 85.71 | 85.71 | 75.00 | 79.59 | 76.67 | 82.14 |
荒漠 Desert | 100.00 | 93.33 | 100.00 | 91.18 | 87.50 | 93.33 |
总体分类精度OA (%) | 82.16 | 79.81 | 77.00 | |||
卡帕系数Kappa | 0.76 | 0.72 | 0.68 |
Table 4 Accuracy of five grasslands based on random forest (RF), support vector machine (SVM) and artificial neural network (ANN) in Inner Mongolia
草地类型 Grassland classes | 随机森林RF | 支持向量机SVM | 人工神经网络ANN | |||
---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
草甸草原Meadow steppe | 64.29 | 77.14 | 85.00 | 80.95 | 65.71 | 65.71 |
典型草原Typical steppe | 89.27 | 78.02 | 81.58 | 65.22 | 82.22 | 81.32 |
荒漠化草原Desert steppe | 78.00 | 88.64 | 75.53 | 75.00 | 71.43 | 68.18 |
草原化荒漠Steppe desert | 85.71 | 85.71 | 75.00 | 79.59 | 76.67 | 82.14 |
荒漠 Desert | 100.00 | 93.33 | 100.00 | 91.18 | 87.50 | 93.33 |
总体分类精度OA (%) | 82.16 | 79.81 | 77.00 | |||
卡帕系数Kappa | 0.76 | 0.72 | 0.68 |
草地类型 Grassland classes | 验证集Validation dataset | 总计 Total | 用户精度 UA (%) | ||||
---|---|---|---|---|---|---|---|
草甸草原 Meadow steppe | 典型草原Typical steppe | 荒漠化草原Desert steppe | 草原化荒漠Steppe desert | 荒漠 Desert | |||
草甸草原Meadow steppe | 27 | 5 | 2 | 1 | 0 | 35 | 77.14 |
典型草原Typical steppe | 15 | 71 | 5 | 0 | 0 | 91 | 78.02 |
荒漠化草原Desert steppe | 0 | 3 | 39 | 2 | 0 | 44 | 88.64 |
草原化荒漠Steppe desert | 0 | 0 | 4 | 24 | 0 | 28 | 85.71 |
荒漠Desert | 0 | 0 | 0 | 1 | 14 | 15 | 93.33 |
总计Total | 42 | 79 | 50 | 28 | 14 | 213 | - |
生产者精度PA (%) | 64.29 | 89.27 | 78.00 | 85.71 | 100.00 | - | - |
Table 5 The confusion matrix of five grassland classes based on RF algorithma
草地类型 Grassland classes | 验证集Validation dataset | 总计 Total | 用户精度 UA (%) | ||||
---|---|---|---|---|---|---|---|
草甸草原 Meadow steppe | 典型草原Typical steppe | 荒漠化草原Desert steppe | 草原化荒漠Steppe desert | 荒漠 Desert | |||
草甸草原Meadow steppe | 27 | 5 | 2 | 1 | 0 | 35 | 77.14 |
典型草原Typical steppe | 15 | 71 | 5 | 0 | 0 | 91 | 78.02 |
荒漠化草原Desert steppe | 0 | 3 | 39 | 2 | 0 | 44 | 88.64 |
草原化荒漠Steppe desert | 0 | 0 | 4 | 24 | 0 | 28 | 85.71 |
荒漠Desert | 0 | 0 | 0 | 1 | 14 | 15 | 93.33 |
总计Total | 42 | 79 | 50 | 28 | 14 | 213 | - |
生产者精度PA (%) | 64.29 | 89.27 | 78.00 | 85.71 | 100.00 | - | - |
1 | Ren J Z, Hu Z Z, Mou X D, et al. Comprehensive sequential classification of grassland and its significance in grassland genesis. Chinese Journal of Grassland, 1980(1): 12-24, 38. |
任继周, 胡自治, 牟新待, 等. 草原的综合顺序分类法及其草原发生学意义. 中国草原, 1980(1): 12-24, 38. | |
2 | Ren J Z. Classfication and cluster applicable for grassland type. Acta Agrestia Sinica, 2008, 16(1): 4-10. |
任继周. 分类、聚类与草原类型. 草地学报, 2008, 16(1): 4-10. | |
3 | Ren J Z, Hu Z Z, Zhao J, et al. A grassland classification system and its application in China. The Rangeland Journal, 2008, 30(2): 199-209. |
4 | Ma X L, Li W J, Chen Q G. Preliminary exploration of native grassland classification of Gansu Province based on GIS and comprehensive and sequential grassland classification method. Pratacultural Science, 2009, 26(5): 7-13. |
马轩龙, 李文娟, 陈全功. 基于GIS与草原综合顺序分类法对甘肃省草地类型的划分初探. 草业科学, 2009, 26(5): 7-13. | |
5 | Su D X. The compilation and study of the grassland resource map of China on the scale of 1∶1000000. Journal of Natural Resources, 1996, 11(1): 75-83. |
苏大学. 1∶1000000中国草地资源图的编制与研究. 自然资源学报, 1996, 11(1): 75-83. | |
6 | Yue R W, Zhang N, Wang J J, et al. Spatiotemporal variation of grassland aboveground biomass in Inner Mongolia from 2000 to 2019. Journal of University of Chinese Academy of Sciences, 2022, 39(1): 21-33. |
乐荣武, 张娜, 王晶杰, 等. 2000-2019年内蒙古草地地上生物量的时空变化特征. 中国科学院大学学报, 2022, 39(1): 21-33. | |
7 | Xu B, Yang X C, Tao W G, et al. Remote sensing monitoring upon the grass production in China. Acta Ecologica Sinica, 2007, 27(2): 405-413. |
徐斌, 杨秀春, 陶伟国, 等. 中国草原产草量遥感监测. 生态学报, 2007, 27(2): 405-413. | |
8 | Sun M, Shen W S, Xie M, et al. The identification of grassland types in the source region of the Yarlung Zangbo River based on spectral features. Remote Sensing for Land & Resources, 2012, 24(1): 83-89. |
孙明, 沈渭寿, 谢敏, 等. 基于光谱特征的雅鲁藏布江源区草地类型识别. 国土资源遥感, 2012, 24(1): 83-89. | |
9 | Yang J L, Zhou Z F, Zhao Z L, et al. Research of the grassland types extraction by ALOS image in Karst mountainous area. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6): 81-85. |
杨尽利, 周忠发, 赵正隆, 等. 基于ALOS影像的喀斯特山区草地类型提取研究. 中国农业资源与区划, 2013, 34(6): 81-85. | |
10 | Guo F F, Fan J R, Tang X G, et al. Comparison of methods for grassland classification based on HJ-1A hyperspectral image data in North Tibet. Remote Sensing Information, 2013, 28(1): 77-82. |
郭芬芬, 范建容, 汤旭光, 等. 基于HJ-1A高光谱数据的藏北高原草地分类方法对比. 遥感信息, 2013, 28(1): 77-82. | |
11 | Qian Y R, Yu J, Jia Z H, et al. The classification strategy of desert grassland based on decision tree using remote sensing image. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(2): 159-166. |
钱育蓉, 于炯, 贾振红, 等. 基于决策树的典型荒漠草地遥感分类策略. 西北农林科技大学学报(自然科学版), 2013, 41(2): 159-166. | |
12 | Navin M S, Agilandeeswari L. Multispectral and hyperspectral images based land use/land cover change prediction analysis: An extensive review. Multimedia Tools and Applications, 2020, 79(11): 1-24. |
13 | Meng B P, Yang Z G, Yu H Y, et al. Mapping of Kobresia pygmaea community based on unmanned aerial vehicle technology and Gaofen remote sensing data in alpine meadow grassland: A case study in eastern of Qinghai-Tibetan Plateau. Remote Sensing, 2021, 13(13): 2483. |
14 | Yang C, Wu G F, Li Q Q, et al. Research progress on remote sensing classification of vegetation. Geography and Geo-Information Science, 2018, 34(4): 24-32. |
杨超, 邬国锋, 李清泉, 等. 植被遥感分类方法研究进展. 地理与地理信息科学, 2018, 34(4): 24-32. | |
15 | You X B, Wang L. Application of auxiliary information to improve forest classification capability and forest division. Journal of Beijing Forestry University, 2003, 25(S1): 41-42. |
游晓斌, 王蕾. 应用辅助信息提高森林分类和森林区划能力的研究. 北京林业大学学报, 2003, 25(S1): 41-42. | |
16 | Elumnoh A, Shrestha R P. Application of DEM data to Landsat image classification: Evaluation in a tropical wet-dry landscape of Thailand. Photogrammetric Engineering & Remote Sensing, 2000, 66(3): 297-304. |
17 | Huo H T, Wang R H, You X X. Vegetation classification of TM imagery using ancillary data. Journal of Beijing Forestry University, 2001, 23(2): 28-31. |
霍宏涛, 王任华, 游先祥. 三维及相关辅助信息在提高图像分类精度中的研究. 北京林业大学学报, 2001, 23(2): 28-31. | |
18 | Li D F, Tian Y, Hao F H. NDVI data based study on complex classification of vegetation cover of Yellow River Basin. Research of Soil and Water Conservation, 2003, 10(4): 88-91. |
李道峰, 田英, 郝芳华. 基于NDVI数据的黄河流域地表植被覆盖综合分类研究. 水土保持研究, 2003, 10(4): 88-91. | |
19 | Zhen Y, Wu Z P, Yin Z H, et al. Study on spatio-temporal change of land use in Zoige County, Sichuan Province. Ecological Science, 2022, 41(2): 41-49. |
甄艳, 吴宗攀, 尹志恒, 等. 四川省若尔盖县土地利用时空变化研究. 生态科学, 2022, 41(2): 41-49. | |
20 | Xiao Y F, Chen W Y, Wang B J, et al. Study on temporal and spatial change of land use and its relationship with climate factors in Qilian Mountain National Nature Reserve. Acta Agrestia Sinica, 2021, 29(9): 2049-2057. |
肖云飞, 陈文业, 王斌杰, 等. 祁连山国家级自然保护区土地利用时空变化及与气候因子关系研究.草地学报, 2021, 29(9): 2049-2057. | |
21 | Zhang Y M, Zhao S D. Temporal and spatial change of land use in Horqin Desert and its outer area. Chinese Journal of Applied Ecology, 2004, 15(3): 429-435. |
张永民, 赵士洞. 科尔沁沙地及其周围地区土地利用的时空动态变化研究. 应用生态学报, 2004, 15(3): 429-435. | |
22 | Ge J, Meng B P, Yang S X, et al. Dynamic monitoring of alpine grassland coverage based on UAV technology and MODIS remote sensing data-A case study in the headwaters of the Yellow River. Acta Prataculturae Sinica, 2017, 26(3): 1-12. |
葛静, 孟宝平, 杨淑霞, 等. 基于UAV技术和MODIS遥感数据的高寒草地盖度动态变化监测研究——以黄河源东部地区为例. 草业学报, 2017, 26(3): 1-12. | |
23 | Li F X. Application and discussion of UAV technology in ecological remote sensing monitoring of grassland. Bulletin of Surveying and Mapping, 2017(7): 99-102. |
李风贤. 无人机技术在草原生态遥感监测中的应用与探讨. 测绘通报, 2017(7): 99-102. | |
24 | Yi S H, Chen J J, Qin Y, et al. The burying and grazing effects of plateau pika on alpine grassland are small: A pilot study in a semiarid basin on the Qinghai-Tibet Plateau. Biogeosciences, 2016, 13(22): 6273-6284. |
25 | Guo Q H, Wu F F, Hu T Y, et al. Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity. Biodiversity Science, 2016, 24(11): 1267-1278. |
郭庆华, 吴芳芳, 胡天宇, 等. 无人机在生物多样性遥感监测中的应用现状与展望. 生物多样性, 2016, 24(11): 1267-1278. | |
26 | Yang H, Zhou W, Huang L. Temporal and spatial patterns of grassland coverage and responses to hydrothermic factors in Inner Mongolia from 2001 to 2016. Pratacultural Science, 2019, 36(2): 359-367. |
杨晗, 周伟, 黄露. 2001-2016年内蒙古草地覆盖度时空格局及其对水热因子的响应. 草业科学, 2019, 36(2): 359-367. | |
27 | Hua Y C, Sa R L, Wang B. Spatial and temporal variation of grassland NPP and its driving forces in Inner Mongolia. Journal of Desert Research, 2021, 41(5): 130-139. |
滑永春, 萨如拉, 王冰. 内蒙古草原NPP时空变化及驱动力. 中国沙漠, 2021, 41(5): 130-139. | |
28 | Su L D, Yang J, Wan Z Q, et al. Climate change and its impacts on distribution pattern of grassland types in Inner Mongolia. Chinese Journal of Agrometeorology, 2015, 36(2): 139-148. |
苏力德, 杨劼, 万志强, 等. 内蒙古地区草地类型分布格局变化及气候原因分析. 中国农业气象, 2015, 36(2): 139-148. | |
29 | Gao H, Pan X B, Fu Y. Influence of climate change on potential climate productivity in grassland of central Inner Mongolia. Chinese Journal of Agrometeorology, 2009, 30(3): 277-282. |
高浩, 潘学标, 符瑜. 气候变化对内蒙古中部草原气候生产潜力的影响. 中国农业气象, 2009, 30(3): 277-282. | |
30 | Liu H, Guo W L, Quan W J. Climatic division of the types and yields of grassland in Inner Mongolia. Journal of Applied Meteorological Science, 2011, 22(3): 329-335. |
刘洪, 郭文利, 权维俊. 内蒙古草地类型与生物量气候区划. 应用气象学报, 2011, 22(3): 329-335. | |
31 | Yi S H. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. International Journal of Remote Sensing, 2017, 38(10): 2686-2697. |
32 | Gong J M. Spatial distribution of grassland classes in Dalhanmaomingan Union Banner. Inner Mongolia Prataculture, 2011, 23(3): 53-56. |
贡吉玛. 达尔罕茂明安联合旗草原类型空间分布的特征. 内蒙古草业, 2011, 23(3): 53-56. | |
33 | Wang C L, Sa R, Tu L G E, et al. Remote sensing investigation and analysis of grassland resources in Wuhai City. Inner Mongolia Prataculture, 2009, 21(3): 18-24. |
王春兰, 萨仁, 图力古尔, 等. 乌海市草地资源遥感调查分析. 内蒙古草业, 2009, 21(3): 18-24. | |
34 | Zhang Y P, Man L, Jin S, et al. Types of Xilinguole grassland——Based on the Honggeergaole ecological experimental area. Journal of Beijing Institute of Education (Natural Science Edition), 2010, 5(3): 4-9. |
张玉平, 满良, 金山, 等. 锡林郭勒草原草地类型研究——以洪格尔高勒生态建设试验区为例. 北京教育学院学报(自然科学版), 2010, 5(3): 4-9. | |
35 | Meng B P. Estimation grassland above ground biomass based on UAV technology and machine learning methods in alpine grassland, Gannan Region. Lanzhou: Lanzhou University, 2018. |
孟宝平. 基于UAV和机器学习方法的甘南地区高寒草地地上生物量遥感估测研究. 兰州: 兰州大学, 2018. | |
36 | Du J X, Sun Y, Xiang B, et al. Potential distribution of plateau pika and its influence factors in the source region of the Yellow River Basin using BIOMOD. Pratacultural Science, 2019, 36(4): 1074-1083. |
杜嘉星, 孙义, 向波, 等. 基于BIOMOD的黄河源区高原鼠兔潜在分布及其影响因子. 草业科学, 2019, 36(4): 1074-1083. | |
37 | Breiman L. Random forests. Machine Learning, 2001, 45(1): 5-32. |
38 | Wang D J, Jiang Q G, Li Y H, et al. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm. Remote Sensing for Land & Resources, 2020, 32(4): 236-243. |
王德军, 姜琦刚, 李远华, 等. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类. 国土资源遥感, 2020, 32(4): 236-243. | |
39 | Yang C K, Wang C C, Zhang D K, et al. Classification of GF-1 satellite image based on SVM. Geomatics & Spatial Information Technology, 2015, 38(9): 142-146. |
杨长坤, 王崇倡, 张鼎凯, 等. 基于SVM的高分一号卫星影像分类. 测绘与空间地理信息, 2015, 38(9): 142-146. | |
40 | Du P J, Xia J S, Xue Z H, et al. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 2016, 20(2): 236-256. |
杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展. 遥感学报, 2016, 20(2): 236-256. | |
41 | Luo J C, Zhou C H, Yang Y. ANN remote sensing classification model and its integration approach with geo-knowledge. Journal of Remote Sensing, 2001, 5(2): 122-129. |
骆剑承, 周成虎, 杨艳. 人工神经网络遥感影像分类模型及其与知识集成方法研究. 遥感学报, 2001, 5(2): 122-129. | |
42 | Xiu L N, Liu X N. Current status and future direction of the study on artificial neural network classification processing in remote sensing. Remote Sensing Technology and Application, 2003, 18(5): 339-345. |
修丽娜, 刘湘南. 人工神经网络遥感分类方法研究现状及发展趋势探析. 遥感技术与应用, 2003, 18(5): 339-345. | |
43 | Qiao W F, Sheng Y H, Fang B, et al. Land use change information mining in highly urbanized area based on transfer matrix: A case study of Suzhou, Jiangsu Province. Geographical Research, 2013, 32(8): 1497-1507. |
乔伟峰, 盛业华, 方斌, 等. 基于转移矩阵的高度城市化区域土地利用演变信息挖掘——以江苏省苏州市为例. 地理研究, 2013, 32(8): 1497-1507. | |
44 | Su Y J, Guo Q H, Hu T Y, et al. An updated vegetation map of China (1∶1000000). Science Bulletin, 2020, 65(13): 1125-1136. |
苏艳军, 郭庆华, 胡天宇, 等. 中国植被图(1∶1000000)现实性更新. 科学通报, 2020, 65(13): 1125-1136. | |
45 | Wang Z X, Liu C, Zhao B R. Potentials and limitation of AVHRR for grassland classification in Xilingol, Inner Mongolia. Journal of Natural Resources, 2003, 18(6): 704-711. |
王正兴, 刘闯, 赵冰茹. AVHRR草地分类的潜力和局限: 以锡林郭勒草原为例. 自然资源学报, 2003, 18(6): 704-711. | |
46 | Zhao B R, Liu C, Liu A J, et al. Estimate the yield of grassland using MODIS-NDVI——A case study of the grassland in Xilinguole in Inner Mongolia. Pratacultural Science, 2004, 21(8): 12-15. |
赵冰茹, 刘闯, 刘爱军, 等. 利用MODIS-NDVI进行草地估产研究——以内蒙古锡林郭勒草地为例. 草业科学, 2004, 21(8): 12-15. | |
47 | Guo Q H, Guan H C, Hu T Y, et al. Remote sensing-based mapping for the new generation of Vegetation Map of China (1∶500,000). Scientia Sinica Vitae, 2021, 51(3): 229-241. |
郭庆华, 关宏灿, 胡天宇, 等. 新一代1∶50万中国植被图绘制方法探讨. 中国科学: 生命科学, 2021, 51(3): 229-241. | |
48 | Zhang J G, Liu D W, Meng B P, et al. Using UAVs to assess the relationship between alpine meadow bare patches and disturbance by pikas in the source region of Yellow River on the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 2021, 26(6): e01517. |
49 | Meng B P, Gao J L, Liang T G, et al. Modeling of alpine grassland cover based on unmanned aerial vehicle technology and multi-factor methods: A case study in the east of Tibetan Plateau, China. Remote Sensing, 2018, 10(2): 320. |
50 | Wen Q K, Zhang Z X, Liu S, et al. Classification of grassland types by MODIS time-series images in Tibet, China. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010, 3(3): 404-409. |
[1] | Fang LI, Guang-jun WANG, Hai-bo DU, Meng LI, Si-hai LIANG, Hong-ming PENG. Integrating MODIS and Landsat data to reconstruct the Landsat NDVI of a typical region in the Qinghai Lake Basin and changes in the intra-annual NDVI maximum [J]. Acta Prataculturae Sinica, 2023, 32(8): 28-39. |
[2] | Rui GUO, Shuai FU, Meng-jing HOU, Jie LIU, Chun-li MIAO, Xin-yue MENG, Qi-sheng FENG, Jin-sheng HE, Da-wen QIAN, Tian-gang LIANG. Remote sensing retrieval of nature grassland biomass in Menyuan County, Qinghai Province experimental area based on Sentinel-2 data [J]. Acta Prataculturae Sinica, 2023, 32(4): 15-29. |
[3] | Fang-zhen LI, Hua-ping ZHONG, Ke-hui OUYANG, Xiao-min ZHAO, Yu-zhe LI. Estimation and digital mapping of grassland belowground biomass in the Altay region, China, based on machine learning [J]. Acta Prataculturae Sinica, 2022, 31(8): 13-23. |
[4] | Ge-xia QIN, Jing WU, Chun-bin LI, Zhen-xia JI, Zheng-chao QIU, Ying LI. Inversion of grassland aboveground biomass in Tianzhu Zangzu Autonomous County based on a machine learning algorithm [J]. Acta Prataculturae Sinica, 2022, 31(4): 177-188. |
[5] | Zhe-ren JIN, Qi-sheng FENG, Rui-jing WANG, Tian-gang LIANG. A study of grassland aboveground biomass on the Tibetan Plateau using MODIS data and machine learning [J]. Acta Prataculturae Sinica, 2022, 31(10): 1-17. |
[6] | LI Guang-Yong, JIANG Cui-Hong, CHENG Tao, ZHANG Hao-Ran, CHEN Zhan-Tao. Spatial-temporal variation of vegetation phenology and their relationships with vegetation degradation in a Qinghai Lake watershed [J]. Acta Prataculturae Sinica, 2016, 25(1): 22-32. |
[7] | YANG Hong-fei,Gang Cheng-cheng,MU Shao-jie,ZHANG Chao-bin,ZHOU Wei,LI Jian-long. Analysis of the spatio-temporal variation in net primary productivity of grassland during the past 10 years in Xinjiang [J]. Acta Prataculturae Sinica, 2014, 23(3): 39-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||