Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (3): 161-173.DOI: 10.11686/cyxb2023153
Xiang HUANG1(), Meng-yao HE1,2, Zi-xuan WANG1, Guang-ming CHU1, Ping JIANG1,2()
Received:
2023-05-09
Revised:
2023-07-28
Online:
2024-03-20
Published:
2023-12-27
Contact:
Ping JIANG
Xiang HUANG, Meng-yao HE, Zi-xuan WANG, Guang-ming CHU, Ping JIANG. Chloroplast genome characteristics of Physocarpus opulifolius ‘Diabolo’ and phylogenetic analysis of the subfamily Spiraeoideae[J]. Acta Prataculturae Sinica, 2024, 33(3): 161-173.
物种名称Species name | 登录号Accession number | 物种名称Species name | 登录号Accession number |
---|---|---|---|
珍珠花Spiraea thunbergii | ON357873 | 小野株蓝Neillia incisa | MT683856 |
蒙古绣线菊Spiraea mongolica | MT732945 | 高丛珍珠梅Sorbaria arborea | MN901450 |
绣球绣线菊Spiraea blumei | MN418904 | 华北珍珠梅Sorbaria kirilowii | MT528154 |
三裂绣线菊Spiraea trilobata | MW822176 | 星毛珍珠梅Sorbaria sorbifolia var. stellipila | MN026875 |
岛绣线菊Spiraea insularis | MT412405 | 白鹃梅Exochorda racemosa | OL449947 |
窄叶鲜卑花Sibiraea angustata | MW123094 | 齿叶白鹃梅Exochorda serratifolia | MZ981786 |
羊齿叶假升麻Aruncus aethusifolius | MZ882398 | 鸡爪茶Rubus henryi | MW238420 |
假升麻Aruncus sylvester | MW115132 | 白草莓Fragaria nilgerrensis | OM256477 |
风箱果P. amurensis | MK911770 | 鸡冠茶Sibbaldianthe bifurca | MW255973 |
Table 1 Chloroplast genome sequence information of other species
物种名称Species name | 登录号Accession number | 物种名称Species name | 登录号Accession number |
---|---|---|---|
珍珠花Spiraea thunbergii | ON357873 | 小野株蓝Neillia incisa | MT683856 |
蒙古绣线菊Spiraea mongolica | MT732945 | 高丛珍珠梅Sorbaria arborea | MN901450 |
绣球绣线菊Spiraea blumei | MN418904 | 华北珍珠梅Sorbaria kirilowii | MT528154 |
三裂绣线菊Spiraea trilobata | MW822176 | 星毛珍珠梅Sorbaria sorbifolia var. stellipila | MN026875 |
岛绣线菊Spiraea insularis | MT412405 | 白鹃梅Exochorda racemosa | OL449947 |
窄叶鲜卑花Sibiraea angustata | MW123094 | 齿叶白鹃梅Exochorda serratifolia | MZ981786 |
羊齿叶假升麻Aruncus aethusifolius | MZ882398 | 鸡爪茶Rubus henryi | MW238420 |
假升麻Aruncus sylvester | MW115132 | 白草莓Fragaria nilgerrensis | OM256477 |
风箱果P. amurensis | MK911770 | 鸡冠茶Sibbaldianthe bifurca | MW255973 |
基因功能Gene function | 基因分类 Gene group | 基因 Gene |
---|---|---|
光合作用Photosynthesis | 光合系统I Photosystem I | psaA, psaB, psaC, psaI, psaJ |
光合系统II Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbM, psbN, psbT, psbZ | |
NADH 脱氢酶 Subunits of NADH dehydrogenase | ndhA*, ndhB*(2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
细胞色素复合物 Cytochrome b/f complex | petA, petB*, petD*, petG, petL, petN | |
ATP 合成酶 Subunits of ATP synthase | atpA, atpB, atpE, atpF*, atpH, atpI | |
二磷酸核酮糖羧化酶大亚基 Large subunit of rubisco | rbcL | |
自我复制Self-replication | 核糖体大亚基蛋白 Proteins of large ribosomal subunit | rpl14, rpl16*, rpl2*(2), rpl20, rpl22, rpl23(2), rpl32, rpl33, rpl36 |
核糖体小亚基蛋白 Proteins of small ribosomal subunit | #rps19, rps11, rps12**(2), rps14, rps15, rps16*, rps18, rps19, rps2, rps3, rps4, rps7(2), rps8 | |
RNA 聚合酶亚基 Subunits of RNA polymerase | rpoA, rpoB, rpoC1*, rpoC2 | |
核糖体RNA Ribosomal RNAs | rrn16S(2), rrn23S(2), rrn4.5S(2), rrn5S(2) | |
转运RNATransfer RNAs | trnA-UGC*(2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC*, trnG-UCC, trnH-GUG, trnI-CAU(2), trnI-GAU*(2), trnK-UUU*, trnL-CAA(2), trnL-UAA*, trnL-UAG, trnM-CAU, trnN-GUU(2), trnP-UGG, trnQ-UUG, trnR-ACG(2), trnR-UCU, trnS-GCU(2), trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(2), trnV-UAC*, trnW-CCA, trnY-GUA, trnfM-CAU | |
其他基因Other genes | 成熟酶 Maturase | matK |
蛋白酶 Protease | clpP** | |
膜包被蛋白基因 Envelope membrane protein gene | cemA | |
乙酰辅酶A羧化酶Acetyl-CoA carboxylase | accD | |
c型细胞色素合成基因c-type cytochrome synthesis gene | ccsA | |
翻译起始因子Translation initiation factor | - | |
未知功能 Unknown function | 假想叶绿体读码框 Hypothetical chloroplast reading frames | #ycf1, ycf1, ycf2(2), ycf3**, ycf4 |
Table 2 Gene annotation in the chloroplast genome of P. opulifolius ‘Diabolo’
基因功能Gene function | 基因分类 Gene group | 基因 Gene |
---|---|---|
光合作用Photosynthesis | 光合系统I Photosystem I | psaA, psaB, psaC, psaI, psaJ |
光合系统II Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbM, psbN, psbT, psbZ | |
NADH 脱氢酶 Subunits of NADH dehydrogenase | ndhA*, ndhB*(2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
细胞色素复合物 Cytochrome b/f complex | petA, petB*, petD*, petG, petL, petN | |
ATP 合成酶 Subunits of ATP synthase | atpA, atpB, atpE, atpF*, atpH, atpI | |
二磷酸核酮糖羧化酶大亚基 Large subunit of rubisco | rbcL | |
自我复制Self-replication | 核糖体大亚基蛋白 Proteins of large ribosomal subunit | rpl14, rpl16*, rpl2*(2), rpl20, rpl22, rpl23(2), rpl32, rpl33, rpl36 |
核糖体小亚基蛋白 Proteins of small ribosomal subunit | #rps19, rps11, rps12**(2), rps14, rps15, rps16*, rps18, rps19, rps2, rps3, rps4, rps7(2), rps8 | |
RNA 聚合酶亚基 Subunits of RNA polymerase | rpoA, rpoB, rpoC1*, rpoC2 | |
核糖体RNA Ribosomal RNAs | rrn16S(2), rrn23S(2), rrn4.5S(2), rrn5S(2) | |
转运RNATransfer RNAs | trnA-UGC*(2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC*, trnG-UCC, trnH-GUG, trnI-CAU(2), trnI-GAU*(2), trnK-UUU*, trnL-CAA(2), trnL-UAA*, trnL-UAG, trnM-CAU, trnN-GUU(2), trnP-UGG, trnQ-UUG, trnR-ACG(2), trnR-UCU, trnS-GCU(2), trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(2), trnV-UAC*, trnW-CCA, trnY-GUA, trnfM-CAU | |
其他基因Other genes | 成熟酶 Maturase | matK |
蛋白酶 Protease | clpP** | |
膜包被蛋白基因 Envelope membrane protein gene | cemA | |
乙酰辅酶A羧化酶Acetyl-CoA carboxylase | accD | |
c型细胞色素合成基因c-type cytochrome synthesis gene | ccsA | |
翻译起始因子Translation initiation factor | - | |
未知功能 Unknown function | 假想叶绿体读码框 Hypothetical chloroplast reading frames | #ycf1, ycf1, ycf2(2), ycf3**, ycf4 |
基因Gene | 位置Location | 外显子I Exon I | 内含子I Intron I | 外显子II Exon II | 内含子II Intron II | 外显子III Exon III |
---|---|---|---|---|---|---|
trnK-UUU | 大单拷贝区LSC | 37 | 2499 | 35 | ||
rps16 | 大单拷贝区LSC | 39 | 892 | 228 | ||
trnG-GCC | 大单拷贝区LSC | 23 | 695 | 48 | ||
atpF | 大单拷贝区LSC | 145 | 793 | 410 | ||
rpoC1 | 大单拷贝区LSC | 430 | 761 | 1631 | ||
ycf3 | 大单拷贝区LSC | 124 | 734 | 230 | 773 | 153 |
trnL-UAA | 大单拷贝区LSC | 37 | 516 | 50 | ||
trnV-UAC | 大单拷贝区LSC | 39 | 597 | 37 | ||
clpP | 大单拷贝区LSC | 71 | 808 | 291 | 660 | 226 |
petB | 大单拷贝区LSC | 6 | 771 | 657 | ||
petD | 大单拷贝区LSC | 9 | 720 | 474 | ||
rpl16 | 大单拷贝区LSC | 9 | 983 | 402 | ||
rpl2 | 反向重复区IR | 397 | 680 | 431 | ||
ndhB | 反向重复区IR | 775 | 680 | 758 | ||
trnI-GAU | 反向重复区IR | 42 | 943 | 35 | ||
trnA-UGC | 反向重复区IR | 38 | 807 | 35 | ||
ndhA | 小单拷贝区SSC | 553 | 1149 | 539 |
Table 3 Information of gene introns in the chloroplast genome of P. opulifolius ‘Diabolo’ (bp)
基因Gene | 位置Location | 外显子I Exon I | 内含子I Intron I | 外显子II Exon II | 内含子II Intron II | 外显子III Exon III |
---|---|---|---|---|---|---|
trnK-UUU | 大单拷贝区LSC | 37 | 2499 | 35 | ||
rps16 | 大单拷贝区LSC | 39 | 892 | 228 | ||
trnG-GCC | 大单拷贝区LSC | 23 | 695 | 48 | ||
atpF | 大单拷贝区LSC | 145 | 793 | 410 | ||
rpoC1 | 大单拷贝区LSC | 430 | 761 | 1631 | ||
ycf3 | 大单拷贝区LSC | 124 | 734 | 230 | 773 | 153 |
trnL-UAA | 大单拷贝区LSC | 37 | 516 | 50 | ||
trnV-UAC | 大单拷贝区LSC | 39 | 597 | 37 | ||
clpP | 大单拷贝区LSC | 71 | 808 | 291 | 660 | 226 |
petB | 大单拷贝区LSC | 6 | 771 | 657 | ||
petD | 大单拷贝区LSC | 9 | 720 | 474 | ||
rpl16 | 大单拷贝区LSC | 9 | 983 | 402 | ||
rpl2 | 反向重复区IR | 397 | 680 | 431 | ||
ndhB | 反向重复区IR | 775 | 680 | 758 | ||
trnI-GAU | 反向重复区IR | 42 | 943 | 35 | ||
trnA-UGC | 反向重复区IR | 38 | 807 | 35 | ||
ndhA | 小单拷贝区SSC | 553 | 1149 | 539 |
氨基酸 Amino acid | 密码子 Codon | RSCU | 氨基酸 Amino acid | 密码子 Codon | RSCU | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
基因组 Genome | 高表达基因 High expression gene | 低表达基因Low expression gene | ΔRSCU | 基因组 Genome | 高表达基因 High expression gene | 低表达基因 Low expression gene | ΔRSCU | ||||
苯丙氨酸 Phenylalanine | UUU | 1.26 | 0.98 | 1.70 | -0.72 | 丝氨酸Serine | 1.49 | 2.32 | 1.41 | 0.91 | |
0.74 | 1.02 | 0.30 | 0.72 | 1.11 | 1.36 | 0.84 | 0.52 | ||||
亮氨酸Leucine | UUA | 1.52 | 1.97 | 2.25 | -0.28 | UCA | 1.18 | 0.41 | 1.69 | -1.28 | |
1.21 | 1.15 | 0.89 | 0.26 | UCG | 0.78 | 0.00 | 0.38 | -0.38 | |||
CUU | 1.13 | 0.90 | 1.28 | -0.38 | 脯氨酸Proline | 1.08 | 2.21 | 1.49 | 0.72 | ||
0.71 | 0.25 | 0.15 | 0.10 | CCC | 1.02 | 0.28 | 0.94 | -0.66 | |||
0.92 | 1.32 | 0.89 | 0.43 | CCA | 1.25 | 0.97 | 1.10 | -0.13 | |||
CUG | 0.51 | 0.41 | 0.54 | -0.13 | 0.65 | 0.55 | 0.47 | 0.08 | |||
异亮氨酸Isoleucine | 1.18 | 1.60 | 1.42 | 0.18 | 苏氨酸Threonine | 1.17 | 2.05 | 1.53 | 0.52 | ||
0.72 | 0.80 | 0.49 | 0.31 | 1.00 | 1.41 | 0.65 | 0.76 | ||||
AUA | 1.10 | 0.60 | 1.08 | -0.48 | ACA | 1.22 | 0.54 | 1.40 | -0.86 | ||
甲硫氨酸Methionine | AUG | 1.00 | 1.00 | 1.00 | 0.00 | ACG | 0.61 | 0.00 | 0.42 | -0.42 | |
缬氨酸Valine | 1.38 | 1.91 | 1.36 | 0.55 | 丙氨酸 Alanine | 1.28 | 2.54 | 2.00 | 0.54 | ||
GUC | 0.67 | 0.18 | 0.47 | -0.29 | GCC | 0.94 | 0.39 | 0.50 | -0.11 | ||
1.29 | 1.82 | 1.63 | 0.19 | GCA | 1.17 | 0.85 | 1.00 | -0.15 | |||
GUG | 0.67 | 0.09 | 0.54 | -0.45 | GCG | 0.61 | 0.23 | 0.50 | -0.27 | ||
络氨酸Tyrosine | UAU | 1.34 | 1.40 | 1.61 | -0.21 | 半胱氨酸Cysteine | UGU | 1.29 | 1.33 | 2.00 | -0.67 |
0.66 | 0.60 | 0.39 | 0.21 | 0.71 | 0.67 | 0.00 | 0.67 | ||||
组氨酸Histidine | CAU | 1.42 | 1.22 | 1.50 | -0.28 | 精氨酸 Arginine | 0.80 | 3.20 | 1.13 | 2.07 | |
0.58 | 0.78 | 0.50 | 0.28 | 0.47 | 1.00 | 0.17 | 0.83 | ||||
谷氨酰胺Glutamine | CAA | 1.43 | 1.65 | 1.74 | -0.09 | CGA | 1.03 | 0.80 | 1.30 | -0.50 | |
0.57 | 0.35 | 0.26 | 0.09 | CGG | 0.71 | 0.20 | 0.17 | 0.03 | |||
天冬酰胺Asparagine | AAU | 1.43 | 1.05 | 1.62 | -0.57 | AGA | 1.90 | 0.40 | 2.72 | -2.32 | |
0.57 | 0.95 | 0.38 | 0.57 | AGG | 1.09 | 0.40 | 0.51 | -0.11 | |||
赖氨酸Lysine | 1.40 | 2.00 | 1.60 | 0.40 | 丝氨酸Serine | AGU | 0.86 | 1.23 | 1.36 | -0.13 | |
AAG | 0.60 | 0.00 | 0.40 | -0.40 | 0.59 | 0.68 | 0.33 | 0.35 | |||
天冬氨酸Aspartate | GAU | 1.44 | 1.37 | 1.66 | -0.29 | 甘氨酸Glycine | 1.06 | 2.28 | 0.84 | 1.44 | |
0.56 | 0.63 | 0.34 | 0.29 | GGC | 0.59 | 0.68 | 0.74 | -0.06 | |||
谷氨酸Glutamate | GAA | 1.42 | 1.57 | 1.74 | -0.17 | GGA | 1.42 | 0.74 | 1.79 | -1.05 | |
0.58 | 0.43 | 0.26 | 0.17 | GGG | 0.93 | 0.31 | 0.63 | -0.32 | |||
色氨酸Tryptophan | UGG | 1.00 | 1.00 | 1.00 | 0.00 | 终止子Terminator | UGA | 0.99 | 0.00 | 0.00 | 0.00 |
1.31 | 3.00 | 1.50 | 1.50 | ||||||||
UAG | 0.70 | 0.00 | 1.50 | -1.50 |
Table 4 Relative synonymous codon usage (RSCU) of genes in the chloroplast genome of P. opulifolius ‘Diabolo’
氨基酸 Amino acid | 密码子 Codon | RSCU | 氨基酸 Amino acid | 密码子 Codon | RSCU | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
基因组 Genome | 高表达基因 High expression gene | 低表达基因Low expression gene | ΔRSCU | 基因组 Genome | 高表达基因 High expression gene | 低表达基因 Low expression gene | ΔRSCU | ||||
苯丙氨酸 Phenylalanine | UUU | 1.26 | 0.98 | 1.70 | -0.72 | 丝氨酸Serine | 1.49 | 2.32 | 1.41 | 0.91 | |
0.74 | 1.02 | 0.30 | 0.72 | 1.11 | 1.36 | 0.84 | 0.52 | ||||
亮氨酸Leucine | UUA | 1.52 | 1.97 | 2.25 | -0.28 | UCA | 1.18 | 0.41 | 1.69 | -1.28 | |
1.21 | 1.15 | 0.89 | 0.26 | UCG | 0.78 | 0.00 | 0.38 | -0.38 | |||
CUU | 1.13 | 0.90 | 1.28 | -0.38 | 脯氨酸Proline | 1.08 | 2.21 | 1.49 | 0.72 | ||
0.71 | 0.25 | 0.15 | 0.10 | CCC | 1.02 | 0.28 | 0.94 | -0.66 | |||
0.92 | 1.32 | 0.89 | 0.43 | CCA | 1.25 | 0.97 | 1.10 | -0.13 | |||
CUG | 0.51 | 0.41 | 0.54 | -0.13 | 0.65 | 0.55 | 0.47 | 0.08 | |||
异亮氨酸Isoleucine | 1.18 | 1.60 | 1.42 | 0.18 | 苏氨酸Threonine | 1.17 | 2.05 | 1.53 | 0.52 | ||
0.72 | 0.80 | 0.49 | 0.31 | 1.00 | 1.41 | 0.65 | 0.76 | ||||
AUA | 1.10 | 0.60 | 1.08 | -0.48 | ACA | 1.22 | 0.54 | 1.40 | -0.86 | ||
甲硫氨酸Methionine | AUG | 1.00 | 1.00 | 1.00 | 0.00 | ACG | 0.61 | 0.00 | 0.42 | -0.42 | |
缬氨酸Valine | 1.38 | 1.91 | 1.36 | 0.55 | 丙氨酸 Alanine | 1.28 | 2.54 | 2.00 | 0.54 | ||
GUC | 0.67 | 0.18 | 0.47 | -0.29 | GCC | 0.94 | 0.39 | 0.50 | -0.11 | ||
1.29 | 1.82 | 1.63 | 0.19 | GCA | 1.17 | 0.85 | 1.00 | -0.15 | |||
GUG | 0.67 | 0.09 | 0.54 | -0.45 | GCG | 0.61 | 0.23 | 0.50 | -0.27 | ||
络氨酸Tyrosine | UAU | 1.34 | 1.40 | 1.61 | -0.21 | 半胱氨酸Cysteine | UGU | 1.29 | 1.33 | 2.00 | -0.67 |
0.66 | 0.60 | 0.39 | 0.21 | 0.71 | 0.67 | 0.00 | 0.67 | ||||
组氨酸Histidine | CAU | 1.42 | 1.22 | 1.50 | -0.28 | 精氨酸 Arginine | 0.80 | 3.20 | 1.13 | 2.07 | |
0.58 | 0.78 | 0.50 | 0.28 | 0.47 | 1.00 | 0.17 | 0.83 | ||||
谷氨酰胺Glutamine | CAA | 1.43 | 1.65 | 1.74 | -0.09 | CGA | 1.03 | 0.80 | 1.30 | -0.50 | |
0.57 | 0.35 | 0.26 | 0.09 | CGG | 0.71 | 0.20 | 0.17 | 0.03 | |||
天冬酰胺Asparagine | AAU | 1.43 | 1.05 | 1.62 | -0.57 | AGA | 1.90 | 0.40 | 2.72 | -2.32 | |
0.57 | 0.95 | 0.38 | 0.57 | AGG | 1.09 | 0.40 | 0.51 | -0.11 | |||
赖氨酸Lysine | 1.40 | 2.00 | 1.60 | 0.40 | 丝氨酸Serine | AGU | 0.86 | 1.23 | 1.36 | -0.13 | |
AAG | 0.60 | 0.00 | 0.40 | -0.40 | 0.59 | 0.68 | 0.33 | 0.35 | |||
天冬氨酸Aspartate | GAU | 1.44 | 1.37 | 1.66 | -0.29 | 甘氨酸Glycine | 1.06 | 2.28 | 0.84 | 1.44 | |
0.56 | 0.63 | 0.34 | 0.29 | GGC | 0.59 | 0.68 | 0.74 | -0.06 | |||
谷氨酸Glutamate | GAA | 1.42 | 1.57 | 1.74 | -0.17 | GGA | 1.42 | 0.74 | 1.79 | -1.05 | |
0.58 | 0.43 | 0.26 | 0.17 | GGG | 0.93 | 0.31 | 0.63 | -0.32 | |||
色氨酸Tryptophan | UGG | 1.00 | 1.00 | 1.00 | 0.00 | 终止子Terminator | UGA | 0.99 | 0.00 | 0.00 | 0.00 |
1.31 | 3.00 | 1.50 | 1.50 | ||||||||
UAG | 0.70 | 0.00 | 1.50 | -1.50 |
重复类型(数量) SSR repeat type (Number) | 重复序列 SSR repeat sequence | 重复次数 Number of copies | 总数Total | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 20 | |||
单碱基Mononucleotide (66) | A/T | - | - | - | - | - | 25 | 13 | 10 | 6 | 3 | 2 | 2 | 3 | 1 | 65 |
C/G | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | 1 | |
二碱基Dinucleotide (7) | AG/CT | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | 1 |
AT/TA | - | - | 4 | 1 | 1 | - | - | - | - | - | - | - | - | - | 6 | |
三碱基Trinucleotide (4) | AAT/ATT | - | 4 | - | - | - | - | - | - | - | - | - | - | - | - | 4 |
四碱基Tetranucleotide (9) | AAAT/ATTT | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | 8 |
AATT/AATT | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | |
五碱基Pentanucleotide (1) | AATAT/ATATT | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
Table 5 Number of SSRs identified in the chloroplast genome of P. opulifolius ‘Diabolo’
重复类型(数量) SSR repeat type (Number) | 重复序列 SSR repeat sequence | 重复次数 Number of copies | 总数Total | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 20 | |||
单碱基Mononucleotide (66) | A/T | - | - | - | - | - | 25 | 13 | 10 | 6 | 3 | 2 | 2 | 3 | 1 | 65 |
C/G | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | 1 | |
二碱基Dinucleotide (7) | AG/CT | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | 1 |
AT/TA | - | - | 4 | 1 | 1 | - | - | - | - | - | - | - | - | - | 6 | |
三碱基Trinucleotide (4) | AAT/ATT | - | 4 | - | - | - | - | - | - | - | - | - | - | - | - | 4 |
四碱基Tetranucleotide (9) | AAAT/ATTT | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | 8 |
AATT/AATT | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | |
五碱基Pentanucleotide (1) | AATAT/ATATT | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 |
1 | Lu L D. The evolution and distribution of subfam. Spiraeoideae (Rosaceae) of China, with special reference to distribution of the subfamily in the world. Acta Phytotaxonomica Sinica, 1996, 34(4): 361-375. |
陆玲娣. 中国蔷薇科绣线菊亚科的演化、分布——兼述世界绣线菊亚科植物的分布. 植物分类学报, 1996, 34(4): 361-375. | |
2 | Yu Y Y, Zhang H Y, Pan J, et al. Cross-breeding of Physocarpus plants. Journal of Northeast Forestry University, 2010, 38(7): 16-18. |
郁永英, 张华艳, 潘杰, 等. 风箱果属植物杂交育种. 东北林业大学学报, 2010, 38(7): 16-18. | |
3 | Liu C J, Liu Y, Wang L. Cutting propagation and cultivation of Physocarpus opulifolius. China Flowers & Horticulture, 2008(2): 22-23. |
刘春静, 刘义, 王林. 紫叶风箱果扦插繁殖与栽培. 中国花卉园艺, 2008(2): 22-23. | |
4 | Li Y, Yang Q H, Yang G L. Breeding technology and garden application of Physocarpus opulifolius in cold area. Heilongjiang Science, 2014, 5(6): 266-267. |
李颖, 杨齐红, 杨广乐. 紫叶风箱果寒地繁育技术及园林应用. 黑龙江科学, 2014, 5(6): 266-267. | |
5 | Zhang H, Zhong H, Wang J, et al. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”. PeerJ, 2016, 4: e2125. |
6 | Xu N, Long J H, Zhang W S, et al. Effects of flooding stress on photosynthesis characteristics in leaves of native species Physocarpus amurensis and introduced species P. opulifolius. Chinese Journal of Ecology, 2018, 37(6): 1880-1888. |
许楠, 龙静泓, 张文石, 等. 淹水胁迫对乡土风箱果和引种紫叶风箱果光合特性的影响. 生态学杂志, 2018, 37(6): 1880-1888. | |
7 | Liu L, Wei X H, Yin D S. Effect of saline-alkali stress on germination and salt-alkaline tolerance of Physocarpus amurensis and P. opulifolius seeds. Journal of Northeast Forestry University, 2021, 49(9): 40-44. |
刘乐, 魏晓慧, 殷东生. 盐碱胁迫对风箱果和紫叶风箱果种子萌发及耐盐碱性的影响. 东北林业大学学报, 2021, 49(9): 40-44. | |
8 | Jin W W, Zhang H H, Teng Z Y, et al. Photosynthetic characteristics in leaves of F1 hybrid between Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo” cutting seedlings. Journal of Central South University of Forestry & Technology, 2018, 38(4): 33-39. |
金微微, 张会慧, 滕志远, 等. 乡土风箱果和紫叶风箱果及其杂交种F1叶片的光合功能研究. 中南林业科技大学学报, 2018, 38(4): 33-39. | |
9 | Xu N, Zhang H H, Zhong H X, et al. The response of photosynthetic functions of F1 cutting seedlings from Physocarpus amurensis Maxim (♀)×Physocarpus opulifolius "Diabolo" (♂) and the parental seedlings to salt stress. Frontiers in Plant Science, 2018, 9: 714. |
10 | Zhang S B, Wang J R, Zhou T, et al. Response of photosynthetic gas exchange and chlorophyll fluorescence characteristics to drought stress in hybrid of Physocarpus amurensis Maxim (♀)×Physocarpus opulifolius “Diabolo” (♂). Journal of Central South University of Forestry & Technology, 2019, 39(9): 33-38. |
张书博, 王均睿, 周涛, 等. 风箱果(♀)×紫叶风箱果(♂)杂交种光合特性对干旱胁迫的响应. 中南林业科技大学学报, 2019, 39(9): 33-38. | |
11 | Buti M, Sargent D J, Mhelembe K G, et al. Genotyping-by-sequencing in an orphan plant species Physocarpus opulifolius helps identify the evolutionary origins of the genus Prunus. BMC Research Notes, 2016, 9: 268. |
12 | Neuhaus H E, Emes M J. Nonphotosynthetic metabolism in plastids. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 111-140. |
13 | Liang H, Zhang Y, Deng J, et al. The complete chloroplast genome sequences of 14 Curcuma species: Insights into genome evolution and phylogenetic relationships within Zingiberales. Frontiers in Genetics, 2020, 11: 802. |
14 | Dyer T. The chloroplast genome: Its nature and role in development. Topics Photosynthesis, 1984, 5: 23-69. |
15 | Chen X, Zhou J, Cui Y, et al. Identification of Ligularia herbs using the complete chloroplast genome as a super-barcode. Frontiers in Pharmacology, 2018, 9: 695. |
16 | Abdullah, Mehmood F, Rahim A, et al. Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. Ecology and Evolution, 2021, 11(12): 7810-7826. |
17 | Su N. Phylogeny of Prunus s.l. (Rosaceae) and species delimitation of Maddenia group. Yangling: Northwest A&F University, 2022. |
苏娜. 广义李属(蔷薇科)的系统发育和臭樱分支的物种界定研究. 杨凌: 西北农林科技大学, 2022. | |
18 | Yang J B, Tang M, Li H T, et al. Complete chloroplast genome of the genus Cymbidium: Lights into the species identification, phylogenetic implications and population genetic analyses. BMC Ecology and Evolution, 2013, 13: 84. |
19 | Vaughn J N, Chaluvadi S R, Tushar, et al. Whole plastome sequences from five ginger species facilitate marker development and define limits to barcode methodology. PLoS One, 2014, 9(10): e108581. |
20 | Zhang L J, Xia X Y, Xu N, et al. An efficient method for genomic DNA extraction from mature tissues of blueberry (Vaccinium spp.). Acta Agriculturae Boreali-Sinica, 2008, 23(Supple2): 205-208. |
张鲁杰, 夏秀英, 徐娜, 等. 高效提取越橘成熟组织基因组DNA的方法. 华北农学报, 2008, 23(增刊2): 205-208. | |
21 | Jin J J, Yu W B, Yang J B, et al. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 2020, 21(1): 241. |
22 | Koo H, Shin A Y, Hong S, et al. The complete chloroplast genome of Hibiscus syriacus using long-read sequencing: comparative analysis to examine the evolution of the tribe Hibisceae. Frontiers in Plant Science, 2023, 14: 1111968. |
23 | Benson D A, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Research, 2017, 45(D1): D37-D42. |
24 | Greiner S, Lehwark P, Bock R. Organellar Genome DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 2019, 47(W1): W59-W64. |
25 | Kurtz S, Choudhuri J V, Ohlebusch E, et al. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research, 2001, 29(22): 4633-4642. |
26 | Beier S, Thiel T, Münch T, et al. MISA-web: A web server for microsatellite prediction. Bioinformatics, 2017, 33(16): 2583-2585. |
27 | Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 2017, 34(12): 3299-3302. |
28 | Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 2017, 14(6): 587-589. |
29 | Minh B Q, Schmidt H A, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 2020, 37(5): 1530-1534. |
30 | Hu S W, Ma L, Ding Y N, et al. Characterization and phylogenetic analysis of the complete chloroplast genome of Geum aleppicum Jacq. Journal of Henan Agricultural University, 2022, 56(3): 438-446. |
胡赛文, 马良, 丁怡宁, 等. 路边青叶绿体基因组特征与系统进化分析. 河南农业大学学报, 2022, 56(3): 438-446. | |
31 | Tang C Q, Qiu Z X, Tan C, et al. Sorbus koehneana (Rosaceae): Its complete chloroplast genome and phylogenetic relationship with S. unguiculata. Acta Horticulturae Sinica, 2022, 49(3): 641-654. |
汤晨茜, 仇志欣, 檀超, 等. 陕甘花楸叶绿体基因组及其与爪瓣花楸的系统关系. 园艺学报, 2022, 49(3): 641-654. | |
32 | Duan C Y, Zhang K, Duan Y Z. Comparison of complete chloroplast genome sequences of Amygdalus pedunculata Pall. Chinese Journal of Biotechnology, 2020, 36(12): 2850-2859. |
段春燕, 张凯, 段义忠. 长柄扁桃叶绿体基因组比较. 生物工程学报, 2020, 36(12): 2850-2859. | |
33 | Wolf P G, Der J P, Duffy A M, et al. The evolution of chloroplast genes and genomes in ferns. Plant Molecular Biology, 2010, 76(3/4/5): 251-261. |
34 | Dugas D V, Hernandez D, Koenen E J, et al. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Scientific Reports, 2015, 5: 16958. |
35 | He L, Qian J, Li X, et al. Complete chloroplast genome of medicinal plant Lonicera japonica: Genome rearrangement, intron gain and loss, and implications for phylogenetic studies. Molecules, 2017, 22(2): 249. |
36 | Zhang D D, Han H W, Yu Z F, et al. Codon preference analysis of chloroplast genome in 12 Rosaceae plants. Journal of Agricultural Science and Technology, 2023, 25(8): 65-75. |
张冬冬, 韩宏伟, 余镇藩, 等. 12种蔷薇科植物叶绿体基因组密码子偏好性分析. 中国农业科技导报, 2023, 25(8): 65-75. | |
37 | Dong W, Xu C, Li D, et al. Comparative analysis of the complete chloroplast genome sequences in Psammophytic haloxylon species (Amaranthaceae). PeerJ, 2016, 4: e2699. |
38 | Jansen R K, Raubeson L A, Boore J L, et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods in Enzymology, 2005, 395: 348-384. |
39 | Hou Z, Li A, Huang C B. Characterization of chloroplast genome of Rosa chinensis ‘Old Blush’. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2023, 52(2): 1-7. |
侯哲, 李昂, 黄长兵. 中国古老月季‘月月粉’叶绿体基因组特征. 福建农林大学学报(自然科学版), 2023, 52(2): 1-7. | |
40 | Hershberg R, Petrov D A. Selection on codon bias. Annual Review of Genetics, 2008, 42: 287-299. |
41 | Zhang S D, Jin J J, Chen S Y, et al. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist, 2017, 214(3): 1355-1367. |
42 | Campbell W H, Gowri G. Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiology, 1990, 92(1): 1-11. |
43 | Du X, Zeng T, Feng Q, et al. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species. Gene, 2020, 731: 144340. |
44 | Powell W, Morgante M, McDevitt R, et al. Polymorphic simple sequences repeat regions in chloroplast genomes: Applications to the population genetics of pines. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(17): 7759-7763. |
45 | Qin Z, Wang Y, Wang Q, et al. Evolution analysis of simple sequence repeats in plant genome. PLoS One, 2015, 10(12): e0144108. |
46 | Raman G, Choi K S, Park S. Phylogenetic relationships of the fern Cyrtomium falcatum (Dryopteridaceae) from Dokdo Island based on chloroplast genome sequencing. Genes (Basel), 2016, 7(12): 115. |
47 | Jiang M, Ke S S, Wang J F. Characterization and phylogenetic analysis of Ostrya multinervis chloroplast genome. Scientia Silvae Sinicae, 2020, 56(5): 60-68. |
蒋明, 柯世省, 王军峰. 多脉铁木叶绿体基因组的序列特征和系统发育. 林业科学, 2020, 56(5): 60-68. |
[1] | Xiao-dong YU, Hao-yang YU, Xu YANG, Dong-xu ZHAO, Lin-gang ZHANG. Difference analysis of chloroplast genome sequence between two ecotypes of Leymus chinensis in Inner Mongolia [J]. Acta Prataculturae Sinica, 2023, 32(7): 72-84. |
[2] | Shou-yu GAO, Yu-ying LI, Zhi-qing YANG, Kuan-hu DONG, Fang-shan XIA. Codon usage bias analysis of the chloroplast genome of Bothriochloa ischaemum [J]. Acta Prataculturae Sinica, 2023, 32(7): 85-95. |
[3] | Zhi-peng LIU, Guang-peng REN. Progress on the taxonomic classification of Medicago species [J]. Acta Prataculturae Sinica, 2022, 31(11): 191-203. |
[4] | LI Xiu-zhang, SONG Hui, ZHANG Zong-hao, XU Hai-feng, LIU Xin, LI Yu-ling, LI Chun-jie. Analysis of codon usage bias in the genome of Epichloё gansuensis [J]. Acta Prataculturae Sinica, 2020, 29(5): 67-77. |
[5] | KUANG Yu, WANG Jian-Jun, XU Wen-Bo, TIAN Pei. Analysis of actin sequences from Epichloё endophyte in Festuca sinensis [J]. Acta Prataculturae Sinica, 2016, 25(9): 125-131. |
[6] | BAO Gen-Sheng, LI Chun-Jie. Isolation and identification of endophytes infecting Stipa purpurea, a dominant grass in meadows of the Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2016, 25(3): 32-42. |
[7] | WANG Chao-Qun, GUO Shi-Qi, LIU Mei, RU Jian, WANG Jing-Ru, CHENG Xin-Yu. Stomatal structures of the Apiaceae subfamilies Mackinlayoideae and Azorelloideae and their taxonomic value [J]. Acta Prataculturae Sinica, 2016, 25(10): 132-141. |
[8] | SONG Hui, NAN Zhi-Biao, TIAN Pei. Characteristic of asexual endophytes isolated from Elymus species in northwest China [J]. Acta Prataculturae Sinica, 2015, 24(9): 89-95. |
[9] | YANG Guo-Feng, SU Kun-Long, ZHAO Yi-Ran, SONG Zhi-Bin, SUN Juan. Analysis of codon usage in the chloroplast genome of Medicago truncatula [J]. Acta Prataculturae Sinica, 2015, 24(12): 171-179. |
[10] | PAN Ming-hong,LING Yao,JING Wen,MA Hong-ping,PENG Yan. Genetic diversity and phylogeny of rhizobia isolated from white clover in Sichuan Province [J]. Acta Prataculturae Sinica, 2014, 23(5): 143-152. |
[11] | WANG Dan,GONG Chun-xia,GOU Ya-feng,ZHOU Lu,ZHU Jun-bao,GAO Jian-feng. Phylogenetic analyses on the biological crusts of several algae in the Taklimakan Desert [J]. Acta Prataculturae Sinica, 2014, 23(3): 97-103. |
[12] | MA Xing-yong, PENG Xian-jun, SU Man, ZHANG Le-xin, ZHOU Qing-yuan, CHEN Shuang-yan, CHENG Li-qin, LIU Gong-she. Phylogeny and function characterization of DREB transcription factors in Leymus chinensis [J]. Acta Prataculturae Sinica, 2012, 21(6): 190-197. |
[13] | ZHANG Chun, FAN Xing, SHA Li-na, KANG Hou-yang, ZHANG Hai-qin, ZHOU Yong-hong. Phylogeny of Elymus sensu lato in Triticeae (Poaceae) based on plastid trnL-F sequence data [J]. Acta Prataculturae Sinica, 2011, 20(3): 162-173. |
[14] |
WANG Xiao-li, FAN Xing,ZHANG Chun, SHA Li-na, ZHANG Hai-qin, ZHOU Yong-hong. Phylogeny of species with the StH genome in Triticeae (Poaceae) inferredfrom nuclear rDNA ITS sequences [J]. Acta Prataculturae Sinica, 2009, 18(6): 82-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||