Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (7): 72-84.DOI: 10.11686/cyxb2022338
Previous Articles Next Articles
Xiao-dong YU(), Hao-yang YU(), Xu YANG, Dong-xu ZHAO, Lin-gang ZHANG()
Received:
2022-08-26
Revised:
2022-10-07
Online:
2023-07-20
Published:
2023-05-26
Contact:
Lin-gang ZHANG
Xiao-dong YU, Hao-yang YU, Xu YANG, Dong-xu ZHAO, Lin-gang ZHANG. Difference analysis of chloroplast genome sequence between two ecotypes of Leymus chinensis in Inner Mongolia[J]. Acta Prataculturae Sinica, 2023, 32(7): 72-84.
项目 Item | 灰绿型羊草 GG L. chinensis | 黄绿型羊草 YG L. chinensis | ||
---|---|---|---|---|
长度Length (bp) | 百分比Percent (%) | 长度Length (bp) | 百分比Percent (%) | |
全长 Total length | 136816 | 100.00 | 136809 | 100.00 |
大单拷贝区 Large single-copy (LSC) | 80973 | 59.18 | 80962 | 59.18 |
反向重复序列a Inverted repeats a (IRa) | 21560 | 15.76 | 21562 | 15.76 |
小单拷贝区 Small single-copy (SSC) | 12723 | 9.30 | 12723 | 9.30 |
反向重复序列b Inverted repeats b (IRb) | 21560 | 15.76 | 21562 | 15.76 |
蛋白编码基因 Protein coding genes | 59235 | 43.29 | 59235 | 43.30 |
转运RNA tRNA | 3046 | 2.23 | 3046 | 2.23 |
核糖体RNA rRNA | 9192 | 6.72 | 9192 | 6.72 |
Table 1 Characteristics of two ecotypes of L. chinensis chloroplast genome
项目 Item | 灰绿型羊草 GG L. chinensis | 黄绿型羊草 YG L. chinensis | ||
---|---|---|---|---|
长度Length (bp) | 百分比Percent (%) | 长度Length (bp) | 百分比Percent (%) | |
全长 Total length | 136816 | 100.00 | 136809 | 100.00 |
大单拷贝区 Large single-copy (LSC) | 80973 | 59.18 | 80962 | 59.18 |
反向重复序列a Inverted repeats a (IRa) | 21560 | 15.76 | 21562 | 15.76 |
小单拷贝区 Small single-copy (SSC) | 12723 | 9.30 | 12723 | 9.30 |
反向重复序列b Inverted repeats b (IRb) | 21560 | 15.76 | 21562 | 15.76 |
蛋白编码基因 Protein coding genes | 59235 | 43.29 | 59235 | 43.30 |
转运RNA tRNA | 3046 | 2.23 | 3046 | 2.23 |
核糖体RNA rRNA | 9192 | 6.72 | 9192 | 6.72 |
基因分类 Gene classification | 灰绿型GG | 黄绿型YG | 基因分类 Gene classification | 灰绿型GG | 黄绿型YG |
---|---|---|---|---|---|
基因总数 Total genes | 131 | 131 | tRNA基因 tRNA genes | 39 | 39 |
蛋白质编码基因 Protein-coding genes | 84 | 84 | 内含子中的基因 Genes with introns | 12 | 12 |
rRNA基因 rRNA genes | 8 | 8 | IR区重复的基因 Genes duplicated by IR | 18 | 18 |
Table 2 Number of genes found in two ecotypes of L. chinensis chloroplast genome
基因分类 Gene classification | 灰绿型GG | 黄绿型YG | 基因分类 Gene classification | 灰绿型GG | 黄绿型YG |
---|---|---|---|---|---|
基因总数 Total genes | 131 | 131 | tRNA基因 tRNA genes | 39 | 39 |
蛋白质编码基因 Protein-coding genes | 84 | 84 | 内含子中的基因 Genes with introns | 12 | 12 |
rRNA基因 rRNA genes | 8 | 8 | IR区重复的基因 Genes duplicated by IR | 18 | 18 |
基因分类 Category for genes | 基因分组 Group of genes | 基因名称 Name of genes |
---|---|---|
光合作用相关基因Genes for photosynthesis | 光合系统Ⅰ基因Genes of photosystem I | psaB, psaA, psaI, psaJ, psaC |
光合系统Ⅱ基因Genes of photosystem II | psbA, psbK, psbI, psbD, psbC, psbZ, psbM, psbJ, psbB, psbT, pbfI, psbH, psbF, psbE, psbL | |
ATP合酶基因Genes of ATP synthase | atpI, atpH, atpF, atpA, atpE, atpB | |
细胞色素复合物基因Genes of cytochrome b/f complex | petN, petA, petL, petD, petB, petG | |
NADH脱氢酶基因Genes of NADH-dehydrogenase | ndhJ, ndhK, ndhC, ndhB, ndhF, ndhD, ndhE, ndhG, ndhI, ndhA, ndhH | |
二磷酸核酮羧化酶大亚基基因Large subunit genes of RuBisco | rbcL | |
表达相关基因 Genes for expression | rRNA基因rRNA genes | rrn16S, rrn23S, rrn4.5S, rrn5S |
tRNA基因tRNA genes | trnK-UUU, trnQ-UUG, trnS-GCU, trnG-GCC, trnM-CAU, trnS-CGA, trnT-GGU, trnE-UUC, trnY-GUA, trnD-GUC, trnC-GCA, trnR-UCU, trnL-UAA, trnF-GAA, trnV-UAC, trnW-CCA, trnP-UGG, trnH-GUG, trnI-GAU, trnA-UGC, trnN-GUU, trnN-GUU, trnL-UAG, trnL-CAA, trnS-UGA, trnT-UGU, trnV-GAC, trnR-ACG, trnR-ACG, trnS-GGA | |
核糖体小亚基基因Small subunit genes of ribosomal | rps16, rps2, rps14, rps4, rps3, rps18, rps11, rps8, rps19, rps7, rps12, rps15 | |
核糖体大亚基基因Large subunit genes of ribosomal | rpl33, rpl20, rpl36, rpl14, rpl16, rpl22, rpl2, rpl23, rpl32 | |
依赖DNA的RNA聚合酶亚基基因DNA dependent RNA polymerase | rpoB, rpoC1, rpoC2, rpoA | |
其他基因 Other genes | C型细胞色素合成基因C-type cytochrome synthesis gene | ccsA |
外膜蛋白基因Envelope membrane protein gene | cemA | |
成熟酶基因Maturase gene | matK | |
蛋白酶基因Protease gene | clpP | |
转录起始因子基因Translation initiation factor gene | infA | |
未知功能基因Genes of unknown function | 假定叶绿体基因和保守开放阅读框Conserved hypothetical chloroplast reading frames | bptG, ycf3, ycf4 |
Table 3 Genes found in two ecotypes of L. chinensis chloroplast genome
基因分类 Category for genes | 基因分组 Group of genes | 基因名称 Name of genes |
---|---|---|
光合作用相关基因Genes for photosynthesis | 光合系统Ⅰ基因Genes of photosystem I | psaB, psaA, psaI, psaJ, psaC |
光合系统Ⅱ基因Genes of photosystem II | psbA, psbK, psbI, psbD, psbC, psbZ, psbM, psbJ, psbB, psbT, pbfI, psbH, psbF, psbE, psbL | |
ATP合酶基因Genes of ATP synthase | atpI, atpH, atpF, atpA, atpE, atpB | |
细胞色素复合物基因Genes of cytochrome b/f complex | petN, petA, petL, petD, petB, petG | |
NADH脱氢酶基因Genes of NADH-dehydrogenase | ndhJ, ndhK, ndhC, ndhB, ndhF, ndhD, ndhE, ndhG, ndhI, ndhA, ndhH | |
二磷酸核酮羧化酶大亚基基因Large subunit genes of RuBisco | rbcL | |
表达相关基因 Genes for expression | rRNA基因rRNA genes | rrn16S, rrn23S, rrn4.5S, rrn5S |
tRNA基因tRNA genes | trnK-UUU, trnQ-UUG, trnS-GCU, trnG-GCC, trnM-CAU, trnS-CGA, trnT-GGU, trnE-UUC, trnY-GUA, trnD-GUC, trnC-GCA, trnR-UCU, trnL-UAA, trnF-GAA, trnV-UAC, trnW-CCA, trnP-UGG, trnH-GUG, trnI-GAU, trnA-UGC, trnN-GUU, trnN-GUU, trnL-UAG, trnL-CAA, trnS-UGA, trnT-UGU, trnV-GAC, trnR-ACG, trnR-ACG, trnS-GGA | |
核糖体小亚基基因Small subunit genes of ribosomal | rps16, rps2, rps14, rps4, rps3, rps18, rps11, rps8, rps19, rps7, rps12, rps15 | |
核糖体大亚基基因Large subunit genes of ribosomal | rpl33, rpl20, rpl36, rpl14, rpl16, rpl22, rpl2, rpl23, rpl32 | |
依赖DNA的RNA聚合酶亚基基因DNA dependent RNA polymerase | rpoB, rpoC1, rpoC2, rpoA | |
其他基因 Other genes | C型细胞色素合成基因C-type cytochrome synthesis gene | ccsA |
外膜蛋白基因Envelope membrane protein gene | cemA | |
成熟酶基因Maturase gene | matK | |
蛋白酶基因Protease gene | clpP | |
转录起始因子基因Translation initiation factor gene | infA | |
未知功能基因Genes of unknown function | 假定叶绿体基因和保守开放阅读框Conserved hypothetical chloroplast reading frames | bptG, ycf3, ycf4 |
项目 Item | 灰绿型GG | 黄绿型YG |
---|---|---|
总GC含量 Total GC content | 38.41 | 38.42 |
蛋白质编码区的GC含量 GC content in protein-coding regions | 38.98 | 38.98 |
基因间隔区的GC含量 GC content in inter genic spacer | 37.98 | 37.99 |
tRNA中的GC含量 GC content in tRNA | 52.27 | 52.27 |
rRNA中的GC含量 GC content in rRNA | 54.72 | 54.72 |
Table 4 GC content of two ecotypes of L. chinensis chloroplast genome (%)
项目 Item | 灰绿型GG | 黄绿型YG |
---|---|---|
总GC含量 Total GC content | 38.41 | 38.42 |
蛋白质编码区的GC含量 GC content in protein-coding regions | 38.98 | 38.98 |
基因间隔区的GC含量 GC content in inter genic spacer | 37.98 | 37.99 |
tRNA中的GC含量 GC content in tRNA | 52.27 | 52.27 |
rRNA中的GC含量 GC content in rRNA | 54.72 | 54.72 |
基因 Gene | 灰绿型GG | 黄绿型YG | ||||
---|---|---|---|---|---|---|
位置Location | 内含子ⅠIntron Ⅰ | 内含子ⅡIntron Ⅱ | 位置Location | 内含子ⅠIntron Ⅰ | 内含子ⅡIntron Ⅱ | |
trnK-UUU | LSC | 2480 | - | LSC | 2480 | - |
trnS-CGA | LSC | 664 | - | LSC | 664 | - |
trnL-UAA | LSC | 565 | - | LSC | 565 | - |
trnV-UAC | LSC | 598 | - | LSC | 598 | - |
atpF | LSC | 831 | - | LSC | 831 | - |
petD | LSC | 749 | - | LSC | 749 | - |
petB | LSC | 749 | - | LSC | 748 | - |
rps16 | LSC | 838 | - | LSC | 838 | - |
ndhB | IRa | 712 | - | IRa | 712 | - |
rps12 | IRa | 540 | - | IRa | 540 | - |
rpl2 | IRa | 663 | - | IRa | 663 | - |
ycf3 | LSC | 727 | 751 | LSC | 727 | 751 |
Table 5 Genes with introns in the chloroplast genomes of two ecotypes L. chinensis as well as the lengths of the introns (bp)
基因 Gene | 灰绿型GG | 黄绿型YG | ||||
---|---|---|---|---|---|---|
位置Location | 内含子ⅠIntron Ⅰ | 内含子ⅡIntron Ⅱ | 位置Location | 内含子ⅠIntron Ⅰ | 内含子ⅡIntron Ⅱ | |
trnK-UUU | LSC | 2480 | - | LSC | 2480 | - |
trnS-CGA | LSC | 664 | - | LSC | 664 | - |
trnL-UAA | LSC | 565 | - | LSC | 565 | - |
trnV-UAC | LSC | 598 | - | LSC | 598 | - |
atpF | LSC | 831 | - | LSC | 831 | - |
petD | LSC | 749 | - | LSC | 749 | - |
petB | LSC | 749 | - | LSC | 748 | - |
rps16 | LSC | 838 | - | LSC | 838 | - |
ndhB | IRa | 712 | - | IRa | 712 | - |
rps12 | IRa | 540 | - | IRa | 540 | - |
rpl2 | IRa | 663 | - | IRa | 663 | - |
ycf3 | LSC | 727 | 751 | LSC | 727 | 751 |
生态型 Ecotypes | 长度 Length (bp) | 重复类型 Repeat type | 1次重复位置 Repeat 1 start position (bp) | 2次重复位置 Repeat 2 start position (bp) | 1次重复定位 Repeat 1 location | 2次重复定位 Repeat 2 location |
---|---|---|---|---|---|---|
灰绿型GG | 114 | F | 56537 | 134440 | rps3 | rpl23-D |
171 | F | 56652 | 134555 | rps3_psaI | rpl23-D | |
114 | P | 56537 | 83235 | rps3 | rpl23 | |
171 | P | 56652 | 83063 | rps3_psaI | rpl2_rpl23 (rpl23) | |
黄绿型YG | 286 | F | 56526 | 134431 | rps3 | rpl23-D |
30 | P | 16914 | 16914 | psbM_petN (psbM) | psbM_petN (psbM) | |
286 | P | 56526 | 83054 | rps3 | rpl2_rpl23 (rpl2) | |
30 | P | 130206 | 130206 | ndhB-D (intron) | ndhB-D (intron) |
Table 6 Differential dispersed repeats in two ecotypes of L. chinensis chloroplast genome
生态型 Ecotypes | 长度 Length (bp) | 重复类型 Repeat type | 1次重复位置 Repeat 1 start position (bp) | 2次重复位置 Repeat 2 start position (bp) | 1次重复定位 Repeat 1 location | 2次重复定位 Repeat 2 location |
---|---|---|---|---|---|---|
灰绿型GG | 114 | F | 56537 | 134440 | rps3 | rpl23-D |
171 | F | 56652 | 134555 | rps3_psaI | rpl23-D | |
114 | P | 56537 | 83235 | rps3 | rpl23 | |
171 | P | 56652 | 83063 | rps3_psaI | rpl2_rpl23 (rpl23) | |
黄绿型YG | 286 | F | 56526 | 134431 | rps3 | rpl23-D |
30 | P | 16914 | 16914 | psbM_petN (psbM) | psbM_petN (psbM) | |
286 | P | 56526 | 83054 | rps3 | rpl2_rpl23 (rpl2) | |
30 | P | 130206 | 130206 | ndhB-D (intron) | ndhB-D (intron) |
生态型 Ecotypes | 序号 No. | 类型 Type | 重复基序 Repeat motif | 长度 Length (bp) | 起止位置 Start-end (bp) | 定位 Location | 区域 Region |
---|---|---|---|---|---|---|---|
灰绿型GG | 1 | p1 | (A)10 | 10 | 33569~33578 | AtpF (intron) | LSC |
2 | p1 | (A)10 | 10 | 71835~71844 | PetB (intron) | LSC | |
3 | p1 | (A)11 | 11 | 29775~29785 | rpoC2 | LSC | |
4 | p1 | (A)12 | 12 | 44046~44057 | ycf3 (intron) | LSC | |
5 | p1 | (T)10 | 10 | 43056~43065 | ycf3 (intron) | LSC | |
6 | c | (T)10ctctccta(T)10ctgtcata(T)10 | 46 | 76955~77000 | infA+IGS | LSC | |
黄绿型YG | 1 | p1 | (A)10 | 10 | 33564~33573 | AtpF (intron) | LSC |
2 | p1 | (A)10 | 10 | 71824~71833 | PetB (intron) | LSC | |
3 | p1 | (A)11 | 11 | 29770~29780 | rpoC2 | LSC | |
4 | p1 | (A)12 | 12 | 44041~44052 | ycf3 (intron) | LSC | |
5 | p1 | (T)10 | 10 | 43051~43060 | ycf3 (intron) | LSC | |
6 | c | (T)10ctctccta(T)10ctgtcata(T)10 | 46 | 76944~76989 | infA+IGS | LSC |
Table 7 Intragenic SSRs in chloroplast genomes of two ecotypes of L. chinensis
生态型 Ecotypes | 序号 No. | 类型 Type | 重复基序 Repeat motif | 长度 Length (bp) | 起止位置 Start-end (bp) | 定位 Location | 区域 Region |
---|---|---|---|---|---|---|---|
灰绿型GG | 1 | p1 | (A)10 | 10 | 33569~33578 | AtpF (intron) | LSC |
2 | p1 | (A)10 | 10 | 71835~71844 | PetB (intron) | LSC | |
3 | p1 | (A)11 | 11 | 29775~29785 | rpoC2 | LSC | |
4 | p1 | (A)12 | 12 | 44046~44057 | ycf3 (intron) | LSC | |
5 | p1 | (T)10 | 10 | 43056~43065 | ycf3 (intron) | LSC | |
6 | c | (T)10ctctccta(T)10ctgtcata(T)10 | 46 | 76955~77000 | infA+IGS | LSC | |
黄绿型YG | 1 | p1 | (A)10 | 10 | 33564~33573 | AtpF (intron) | LSC |
2 | p1 | (A)10 | 10 | 71824~71833 | PetB (intron) | LSC | |
3 | p1 | (A)11 | 11 | 29770~29780 | rpoC2 | LSC | |
4 | p1 | (A)12 | 12 | 44041~44052 | ycf3 (intron) | LSC | |
5 | p1 | (T)10 | 10 | 43051~43060 | ycf3 (intron) | LSC | |
6 | c | (T)10ctctccta(T)10ctgtcata(T)10 | 46 | 76944~76989 | infA+IGS | LSC |
序号No. | 突变位置Mutation position (bp) | 灰绿型GG | 黄绿型YG | 定位Location | 区域Region |
---|---|---|---|---|---|
1 | 5351 | T | G | rps16 (intron) | LSC |
2 | 5792 | G | T | rps16_trnQ-UUG | LSC |
3 | 15200 | TTCTAT | - | trnT-GGU_trnE-UUG | LSC |
4 | 16289 | A | C | trnD-GUC_psbM | LSC |
5 | 19080 | - | T | trnC-GCA_rpoB | LSC |
6 | 44490 | A | C | ycf3_trnS-GGA | LSC |
7 | 50634 | AAAAA | - | ndhC_trnV-UAC | LSC |
8 | 56407 | A | - | rbcL_rps3 | LSC |
9 | 56653 | G | A | rps3_psaI | LSC |
10 | 65895 | T | G | rpl33_rps18 | LSC |
11 | 72162 | A | - | petB (intron) | LSC |
12 | 74711 | - | A | petD_rpoA | LSC |
13 | 80980 | - | TT | rpl22_rps19 | IRa |
14 | 136815 | - | AA | rps19-D_psbA | IRb |
Table 8 Mutation analysis of two ecotypes of L. chinensis chloroplast genomes
序号No. | 突变位置Mutation position (bp) | 灰绿型GG | 黄绿型YG | 定位Location | 区域Region |
---|---|---|---|---|---|
1 | 5351 | T | G | rps16 (intron) | LSC |
2 | 5792 | G | T | rps16_trnQ-UUG | LSC |
3 | 15200 | TTCTAT | - | trnT-GGU_trnE-UUG | LSC |
4 | 16289 | A | C | trnD-GUC_psbM | LSC |
5 | 19080 | - | T | trnC-GCA_rpoB | LSC |
6 | 44490 | A | C | ycf3_trnS-GGA | LSC |
7 | 50634 | AAAAA | - | ndhC_trnV-UAC | LSC |
8 | 56407 | A | - | rbcL_rps3 | LSC |
9 | 56653 | G | A | rps3_psaI | LSC |
10 | 65895 | T | G | rpl33_rps18 | LSC |
11 | 72162 | A | - | petB (intron) | LSC |
12 | 74711 | - | A | petD_rpoA | LSC |
13 | 80980 | - | TT | rpl22_rps19 | IRa |
14 | 136815 | - | AA | rps19-D_psbA | IRb |
1 | Zhou C, Yang Y F. Edaphic factors of differentiation for two ecotypes Leymus chinensis in North China. Progress in Natural Science, 2006, 16(11): 1150-1155. |
2 | Cui J Z, Qu L Y, Zu Y G. Genetic diversity and differentiation of two ecotypes of Leymus chinensis populations in microhabitat-Allozyme analysis. Acta Ecologica Sinica, 2000, 20(3): 434-439. |
崔继哲, 曲来叶, 祖元刚. 微生境下羊草两种生态型种群的遗传多样性及遗传分化-等位酶分析. 生态学报, 2000, 20(3): 434-439. | |
3 | Zhou C. Study on divergent adaptative characteristics and evolutional mechanism of two ecotypes Leymus chinensis in northeastern plain in China. Changchun: Northeast Normal University, 2004. |
周婵. 东北草原两个生态型羊草趋异适应特性及其进化机理的研究. 长春: 东北师范大学, 2004. | |
4 | Zhang B Y. Differential proteomic analysis of chloroplasts in two ecotypes of Leymus chinensis. Harbin: Harbin Normal University, 2017. |
张宝懿. 两种生态型羊草叶绿体的差异蛋白质组分析. 哈尔滨: 哈尔滨师范大学, 2017. | |
5 | Ma L J, Fan J Q, Narengaowa, et al. Comparative study on chloroplast pigment concentration and morphology between two ecotypes of Leymus chinensis in Inner Mongolia. Pratacultural Science, 2020, 37(9): 1779-1786. |
马利娟, 范精琦, 娜仁高娃, 等. 内蒙古两种生态型羊草叶绿体色素含量以及形态特征的对比. 草业科学, 2020, 37(9): 1779-1786. | |
6 | Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics, 2007, 52(5/6): 267-274. |
7 | Kurtz S, Choudhuri J, Ohlebusch E, et al. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research, 2001, 29(22): 4633-4642. |
8 | Yang J X, Hu G X, Hu G W. Comparative genomics and phylogenetic relationships of two endemic and endangered species (Handeliodendron bodinieri and Eurycorymbus cavaleriei) of two monotypic genera within Sapindales. BMC Genomics, 2022, 23(1): 1-22. |
9 | Wang R J, Cheng C L, Chang C C, et al. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evolutionary Biology, 2008, 8(1): 1-14. |
10 | Huang H, Shi C, Liu Y, et al. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: Genome structure and phylogenetic relationships. BMC Evolutionary Biology, 2014, 14(1): 1-17. |
11 | Liu C K, Lei J Q, Jiang Q P, et al. The complete plastomes of seven Peucedanum plants: Comparative and phylogenetic analyses for the Peucedanum genus. BMC Plant Biology, 2022, 22(1): 1-14. |
12 | Zhang H B, Dvorak J. The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences. American Journal of Botany, 1991, 78(7): 871-884. |
13 | Wang R R C, Jensen K B. Absence of the J genome in Leymus species (Poaceae: Triticeae): Evidence from DNA hybridization and meiotic pairing. Genome, 1994, 37(2): 231-235. |
14 | Hole D J, Jensen K B, Wang R R C, et al. Molecular marker analysis of Leymus flavescens and chromosome pairing in Leymus flavescens hybrids (Poaceae: Triticeae). International Journal of Plant Sciences, 1999, 160(2): 371-376. |
15 | Jonsson K A, Bodvarsdottir S K. Genomic and genetic relationships among species of Leymus (Poaceae: Triticeae) inferred from 18S-26S ribosomal genes. American Journal of Botany, 2001, 88(4): 553-559. |
16 | Civan P, Foster P G, Embley M T, et al. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biology and Evolution, 2014, 6(4): 897-911. |
17 | Wang S, Gao L Z. Complete chloroplast genome sequence of green foxtail (Setaria viridis), a promising model system for C4 photosynthesis. Mitochondrial DNA Part A, 2016, 27(5): 3707-3708. |
18 | Timme R E, Kuehi J V, Boore J L, et al. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. The Botanical Society of America, 2007, 94(3): 302-312. |
19 | Weng M L, Blazier J C, Govindu M, et al. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Molecular Biology and Evolution, 2014, 31(3): 645-659. |
20 | Saski C, Lee S B, Fjellheim S, et al. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theoretical and Applied Genetics, 2007, 115(4): 571-590. |
21 | Wang W C, Chen S Y, Zhang X Z. Whole-genome comparison reveals heterogeneous divergence and mutation hotspots in chloroplast genome of Eucommia ulmoides oliver. International Journal of Molecular Sciences, 2018, 19(4): 1-16. |
22 | Morton B R, Clegg M T. Neighboring base composition is strongly correlated with base substitution bias in a region of the chloroplast genome. Journal of Molecular Evolution, 1995, 41(5): 597-603. |
23 | Morton B R, Oberholzer V M, Clegg M T. The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome. Journal of Molecular Evolution, 1997, 45(3): 227-231. |
24 | Li W Q, Liu Y L, Yang Y, et al. Interspecific chloroplast genome sequence diversity and genomic resources in Diospyros. BMC Plant Biology, 2018, 18(1): 1-11. |
25 | Dong W P, Liu H, Xu C, et al. A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: A case study on ginsengs. BMC Genetics, 2014, 15(1): 1-8. |
26 | Zong D, Gan P H, Zhou A P, et al. Plastome sequences help to resolve deep-level relationships of Populus in the family salicaceae. Frontiers in Plant Science, 2019, 10: 5. |
27 | Sang T, Crawford D J, Stuessy T F. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 1997, 84(8): 1120-1136. |
28 | Mason-Gamer R J, Orme N L, Anderson C M. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome, 2002, 45(6): 991-1002. |
29 | Xu D H, Ban T. Phylogenetic and evolutionary relationships between Elymus humidus and other Elymus species based on sequencing of non-coding regions of cpDNA and AFLP of nuclear DNA. Theoretical and Applied Genetics, 2004, 108(8): 1443-1448. |
30 | Alvarez I, Wendel J F. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 2003, 29(3): 417-434. |
31 | Mansion G, Struwe L. Generic delimitation and phylogenetic relationships within the subtribe Chironiinae (Chironieae: Gentianaceae), with special reference to Centaurium: Evidence from nrDNA and cpDNA sequences. Molecular Phylogenetics and Evolution, 2004, 32(3): 951-977. |
32 | Liu Z, Hao G, Luo Y B, et al. Phylogeny and androecial evolution in Schisandraceae, inferred from sequences of nuclear ribosomal DNA its and chloroplast DNA trnL-F regions. International Journal of Plant Sciences, 2006, 167(3): 539-550. |
33 | Asano T, Tsudzuki T, Takahashi S, et al. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: A comparative analysis of four monocot chloroplast genomes. DNA Research, 2004, 11(2): 93-99. |
34 | Wu Y, Liu F, Yang D G, et al. Comparative chloroplast genomics of Gossypium species: Insights into repeat sequence variations and phylogeny. Frontiers in Plant Science, 2018, 9: 376. |
35 | Yae-Eun L E E, Yoonkyung L E E, Sangtae K I M. A report of the second chloroplast genome sequence in Veronica nakaiana (Plantaginaceae), an endemic species in Korea. Korean Journal of Plant Taxonomy, 2021, 51(1): 109-114. |
36 | Fukuda T, Ashizawa H, Suzuki R, et al. Molecular phylogeny of the genus Asparagus (Asparagaceae) inferred from plastid petB intron and petD-rpoA intergenic spacer sequences. Plant Species Biology, 2010, 20(2): 121-132. |
37 | Choi K S, Chung M G, Park S J. The complete chloroplast genome sequences of three Veroniceae species (Plantaginaceae): Comparative analysis and highly divergent regions. Frontiers in Plant Science, 2016, 7: 355. |
38 | Qin Q L, Li J L, Zeng S Y, et al. The complete plastomes of red fleshed pitaya (Selenicereus monacanthus) and three related Selenicereus species: Insights into gene losses, inverted repeat expansions and phylogenomic implications. Physiology and Molecular Biology of Plants, 2022, 28(1): 123-137. |
[1] | Shi-yang ZHANG, Feng-min LIU, Jun-tao CUI, Lei HE, Yue-yan FENG, Wei-li ZHANG. Effects of three exogenous substances on the physiological and fluorescence characteristics of Stylosanthes guianensis under low-temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(6): 85-99. |
[2] | Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period [J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126. |
[3] | Li-ying LIU, Yu-shan JIA, Wen-qiang FAN, Qiang YIN, Qi-ming CHENG, Zhi-jun WANG. An investigation of the main environmental factors affecting the natural drying of alfalfa for hay, and hay quality [J]. Acta Prataculturae Sinica, 2022, 31(2): 121-132. |
[4] | Yong-chao ZHANG, Guo-ling LIANG, Yan QIN, Wen-hui LIU, Zhi-feng JIA, Yong LIU, Xiang MA. Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus [J]. Acta Prataculturae Sinica, 2022, 31(1): 229-237. |
[5] | Lu-yao WU, Jian-guo ZHANG, Wen-qian CHANG, Shao-lei ZHANG, Qing CHANG. Diurnal change in chlorophyll fluorescence parameters in three desert plants [J]. Acta Prataculturae Sinica, 2021, 30(9): 203-213. |
[6] | SHAN Li-wen, ZHANG Qiang, ZHU Rui-feng, KONG Xiao-lei, CHEN Ji-shan. Effects of AMF on growth and photosynthetic physiological characteristics of Leymus chinensis and Medicago sativa with and without nitrogen and phosphorus application [J]. Acta Prataculturae Sinica, 2020, 29(8): 46-57. |
[7] | WANG Yu-ping, GAO Chun-xiao, WANG Sheng-xiang, HE Xiao-tong. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress [J]. Acta Prataculturae Sinica, 2020, 29(8): 116-125. |
[8] | ZHANG Li-xia, CHANG Qing-shan, XUE Xian, LIU Wei, ZHANG Qiao-ming, CHEN Su-dan, ZHENG Yi-qi, LI Jing-lin, CHEN Wan-dong, LI Da-zhao. Effects of acid stress on chlorophyll fluorescence characteristics and root antioxidant activity of Prunella vulgaris [J]. Acta Prataculturae Sinica, 2020, 29(8): 134-142. |
[9] | LIU Wen-wen, CUI Hui-ting, WEI Chun-xue, LONG Rui-cai, KANG Jun-mei, YANG Qing-chuan, WANG Zhen. Cloning and functional analysis of chlorophyllide a oxygenase encoding gene MtCAO in Medicago truncatula [J]. Acta Prataculturae Sinica, 2020, 29(5): 171-181. |
[10] | ZHAO Xiao-qiang, LU Yan-tian, BAI Ming-xing, XU Ming-xia, PENG Yun-ling, DING Yong-fu, ZHUANG Ze-long, CHEN Fen-qi, ZHANG Da-zhi. Response of maize genotypes with different plant architecture to drought stress [J]. Acta Prataculturae Sinica, 2020, 29(2): 149-162. |
[11] | Shou-feng CHENG, Qiao-lan LIANG, Lie-xin WEI, Xu-wen SANG, Yu-ling JIANG. Detection of alfalfa mosaic virus and white clover mosaic virus in alfalfa and their effects on physiological and biochemical characteristics of alfalfa plants [J]. Acta Prataculturae Sinica, 2020, 29(12): 140-149. |
[12] | HE Hai-feng, YAN Cheng-hong, WU Na, LIU Ji-li, CHANG Wen-wen. Effects of nitrogen application rate on chlorophyll fluorescence characteristics and dry matter accumulation in switchgrass (Panicum virgatum) leaves [J]. Acta Prataculturae Sinica, 2020, 29(11): 141-150. |
[13] | LI Wen-bin, NING Chu-han, LI Wei, LI Feng, GUO Shao-xia. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. |
[14] | LIU Ling, LI Dong, MA Yi-lin, WANG Li-jun, ZHAO Shi-min, ZHOU Jun-xue, SHEN Hong-tao, WANG Yan-fang. Alleviation of drought stress and the physiological mechanisms in tobacco seedlings treated with exogenous melatonin [J]. Acta Prataculturae Sinica, 2019, 28(8): 95-105. |
[15] | WU Xiao, HE Xiu-juan, WU Chao, DONG Yu-feng, ZHANG Yan, XU Yu, QIN Wei-dong, LÜ Jun, WANG San-gen, ZONG Xue-feng. Effect of shading on photosynthetic and antioxidant characteristics of Pueraria lobata [J]. Acta Prataculturae Sinica, 2019, 28(5): 68-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||