Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (8): 123-131.DOI: 10.11686/cyxb2024476
Hao PENG1,2(
), Bao-zhu DONG3, Li-juan MA4, Xiao-dong YU3, Yi-fan ZHANG1, Xiao-fang LI1
Received:2024-11-26
Revised:2024-12-30
Online:2025-08-20
Published:2025-06-16
Contact:
Hao PENG
Hao PENG, Bao-zhu DONG, Li-juan MA, Xiao-dong YU, Yi-fan ZHANG, Xiao-fang LI. Composition and carbon-fixation pathways of carbon-fixing microorganisms in soils of a typical steppe and desert steppe in Inner Mongolia[J]. Acta Prataculturae Sinica, 2025, 34(8): 123-131.
| 采样点Sampling points | 荒漠草原 Desert steppe | 典型草原 Typical steppe |
|---|---|---|
| 1 | 110°36'34.4'' E,41°52'18.1'' N | 117°41'16.5'' E,44°54'17.2'' N |
| 2 | 111°5'16.4'' E,41°47'8.5'' N | 118°34'32.1'' E,45°5'26.9'' N |
| 3 | 111°37'0.5'' E,41°41'58.4'' N | 117°29'7.9'' E,45°30'57.5'' N |
| 4 | 111°52'44.3'' E,41°52'18.1'' N | 118°29'0.9'' E,45°47'13.1'' N |
| 5 | 110°50'5.7'' E,41°20'5.5'' N | 119°10'24.6'' E,46°9'55.3'' N |
| 6 | 112°10'40.5'' E,42°26'17.1'' N | 119°37'35.3'' E,45°47'34.4'' N |
Table 1 Locations of sampling points
| 采样点Sampling points | 荒漠草原 Desert steppe | 典型草原 Typical steppe |
|---|---|---|
| 1 | 110°36'34.4'' E,41°52'18.1'' N | 117°41'16.5'' E,44°54'17.2'' N |
| 2 | 111°5'16.4'' E,41°47'8.5'' N | 118°34'32.1'' E,45°5'26.9'' N |
| 3 | 111°37'0.5'' E,41°41'58.4'' N | 117°29'7.9'' E,45°30'57.5'' N |
| 4 | 111°52'44.3'' E,41°52'18.1'' N | 118°29'0.9'' E,45°47'13.1'' N |
| 5 | 110°50'5.7'' E,41°20'5.5'' N | 119°10'24.6'' E,46°9'55.3'' N |
| 6 | 112°10'40.5'' E,42°26'17.1'' N | 119°37'35.3'' E,45°47'34.4'' N |
固碳微生物分类(纲) Carbon-fixing microorganisms (class) | 典型草原 Typical steppe | 荒漠草原 Desert steppe |
|---|---|---|
| 古细菌Archaea | ||
| 亚硝化球菌纲Nitrososphaeria | 0.389±0.203 | 0.571±0.284 |
| 热原体纲Thermoplasmata | 0.003±0.000 | 0.003±0.001 |
| 深古菌纲Candidatus_Bathyarchaeota | 0.003±0.002 | 0.003±0.001 |
| 热变形菌纲Thermoprotei | n.d. | n.d. |
| 古丸菌纲Archaeoglobi | n.d. | n.d. |
| 洛基古菌纲Lokiarchaeia | n.d. | n.d. |
| 细菌Bacteria | ||
| α-变形菌纲α-Proteobacteria | 13.837±3.349 | 10.524±2.115 |
| 酸微菌纲Acidimicrobiia | 1.050±0.301* | 1.397±0.184* |
| 芽单胞菌纲Gemmatimonadetes | 0.728±0.170 | 1.174±0.477 |
| γ-变形菌纲γ-Proteobacteria | 0.557±0.167* | 0.906±0.335* |
| 蓝藻纲Cyanophyceae | 0.254±0.065 | 0.370±0.246 |
| 厌氧绳菌纲Anaerolineae | 0.250±0.144 | 0.373±0.100 |
| 硝化螺旋菌纲Nitrospiria | 0.165±0.104 | 0.270±0.096 |
| 绿弯菌纲Chloroflexi | 0.080±0.028* | 0.129±0.030* |
| 迷踪菌纲Unclassified_Elusimicrobia | 0.007±0.003 | 0.008±0.002 |
| ζ-变形菌纲ζ-Proteobacteria | 0.001±0.001 | 0.001±0.000 |
| 绿菌纲Chlorobiia | 0.001±0.000 | 0.001±0.000 |
| 脱硫杆菌纲Desulfurobacteriia | n.d. | n.d. |
| 弯曲杆菌纲Campylobacteria | n.d. | n.d. |
| 热脱硫杆菌纲Thermodesulfovibrionia | n.d. | n.d. |
| δ-变形菌纲δ-Proteobacteria (SAR324) | n.d. | n.d. |
| 放线菌纲Actinobacteria | n.d. | n.d. |
| 螺旋体纲Leptospirae | n.d. | n.d. |
Table 2 Relative abundance of carbon-fixing microorganisms (class) in soils of typical steppe and desert steppe (%)
固碳微生物分类(纲) Carbon-fixing microorganisms (class) | 典型草原 Typical steppe | 荒漠草原 Desert steppe |
|---|---|---|
| 古细菌Archaea | ||
| 亚硝化球菌纲Nitrososphaeria | 0.389±0.203 | 0.571±0.284 |
| 热原体纲Thermoplasmata | 0.003±0.000 | 0.003±0.001 |
| 深古菌纲Candidatus_Bathyarchaeota | 0.003±0.002 | 0.003±0.001 |
| 热变形菌纲Thermoprotei | n.d. | n.d. |
| 古丸菌纲Archaeoglobi | n.d. | n.d. |
| 洛基古菌纲Lokiarchaeia | n.d. | n.d. |
| 细菌Bacteria | ||
| α-变形菌纲α-Proteobacteria | 13.837±3.349 | 10.524±2.115 |
| 酸微菌纲Acidimicrobiia | 1.050±0.301* | 1.397±0.184* |
| 芽单胞菌纲Gemmatimonadetes | 0.728±0.170 | 1.174±0.477 |
| γ-变形菌纲γ-Proteobacteria | 0.557±0.167* | 0.906±0.335* |
| 蓝藻纲Cyanophyceae | 0.254±0.065 | 0.370±0.246 |
| 厌氧绳菌纲Anaerolineae | 0.250±0.144 | 0.373±0.100 |
| 硝化螺旋菌纲Nitrospiria | 0.165±0.104 | 0.270±0.096 |
| 绿弯菌纲Chloroflexi | 0.080±0.028* | 0.129±0.030* |
| 迷踪菌纲Unclassified_Elusimicrobia | 0.007±0.003 | 0.008±0.002 |
| ζ-变形菌纲ζ-Proteobacteria | 0.001±0.001 | 0.001±0.000 |
| 绿菌纲Chlorobiia | 0.001±0.000 | 0.001±0.000 |
| 脱硫杆菌纲Desulfurobacteriia | n.d. | n.d. |
| 弯曲杆菌纲Campylobacteria | n.d. | n.d. |
| 热脱硫杆菌纲Thermodesulfovibrionia | n.d. | n.d. |
| δ-变形菌纲δ-Proteobacteria (SAR324) | n.d. | n.d. |
| 放线菌纲Actinobacteria | n.d. | n.d. |
| 螺旋体纲Leptospirae | n.d. | n.d. |
Fig.3 Comparing the relative abundances of enzyme coding genes regulating reductive citric acid cycle (rTCA) and 3-hydroxypropionate cycle (3-HP) in two types of grassland soils
| 1 | Jiang P, Xiao L Q, Wan X, et al. Research progress on microbial carbon sequestration in soil: a review. Eurasian Soil Science, 2022, 55(10): 1395-1404. |
| 2 | Kroth P G. The biodiversity of carbon assimilation. Journal of Plant Physiology, 2015, 172: 76-81. |
| 3 | Lynn T M, Ge T, Yuan H Z, et al. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microbial Ecology, 2017, 73(3): 645-657. |
| 4 | Zhao K, Kong W D, Wang F, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils. Soil Biology and Biochemistry, 2018, 127(1): 230-238. |
| 5 | Chen H, Wang F, Kong W D, et al. Soil microbial CO2 fixation plays a significant role in terrestrial carbon sink in a dryland ecosystem: A four-year small-scale field-plot observation on the Tibetan Plateau. Science of the Total Environment, 2021, 761: 143282. |
| 6 | Yang Z G, Zhang J G, Li J R, et al. Spatiotemporal dynamic variation of temperate grassland classes in Inner Mongolia in the last 20 years. Acta Prataculturae Sinica, 2023, 32(9): 1-16. |
| 杨志贵, 张建国, 李锦荣, 等. 内蒙古温性草原草地类型近20年时空动态变化研究. 草业学报, 2023, 32(9): 1-16. | |
| 7 | Yuan H Z, Ge T, Chen C Y, et al. Significant role for microbial autotrophy in the sequestration of soil carbon. Applied and Environmental Microbiology, 2012, 78(7): 2328-2336. |
| 8 | Sarfraz H, Zhang M, Zhu X X, et al. Significance of Fe(Ⅱ) and environmental factors on carbon-fixing bacterial community in two paddy soils. Ecotoxicology and Environmental Safety, 2019, 182: 109456. |
| 9 | Wu X H, Ge T, Yuan H Z, et al. Changes in bacterial CO2 fixation with depth in agricultural soils. Applied Microbiology and Biotechnology, 2014, 98: 2309-2319. |
| 10 | Gao J, Muhanmmad S, Yue L Y, et al. Changes in CO2-fixing microbial community characteristics with elevation and season in alpine meadow soils on the northern Tibetan Plateau. Acta Ecologica Sinica, 2018, 38(11): 3816-3824. |
| 高静, Said Muhanmmad, 岳琳艳, 等. 藏北高原草甸土壤固碳微生物群落特征随海拔和季节的变化. 生态学报, 2018, 38(11): 3816-3824. | |
| 11 | Liu Z, Sun Y F, Zhang Y Q, et al. Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert. Soil Biology and Biochemistry, 2018, 125: 156-166. |
| 12 | Mi Y, Guo R, Wang Y, et al. Responses of soil bacterial and fungal communities to precipitation in the desert steppe ecosystem of Ningxia. Acta Prataculturae Sinica, 2023, 32(11): 81-92. |
| 米扬, 郭蓉, 王媛, 等. 宁夏荒漠草原土壤细菌与真菌群落对降水变化的响应. 草业学报, 2023, 32(11): 81-92. | |
| 13 | Li J Y, Jin X Y, Zhang X C, et al. Comparative metagenomics of two distinct biological soil crusts in the Tengger Desert, China. Soil Biology and Biochemistry, 2020, 140: 107637. |
| 14 | Okyay T O, Nguyen H N, Castro S L, et al. CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation. Science of the Total Environment, 2016, 572(1): 671-680. |
| 15 | Belnap J. The world at your feet: Desert biological soil crusts. Frontiers in Ecology and the Environment, 2003, 1(5): 181-189. |
| 16 | Ma W H, Han M, Lin X, et al. Carbon storage in vegetation of grasslands in Inner Mongolia. Journal of Arid Land Resources and Environment, 2006, 20(3): 192-195. |
| 马文红, 韩梅, 林鑫, 等.内蒙古温带草地植被的碳储量.干旱区资源与环境, 2006, 20(3): 192-195. | |
| 17 | Bai Y F, Wu J G, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 2008, 89(8): 2140-2153. |
| 18 | Chen X J, Wu X H, Jian Y, et al. Carbon dioxide assimilation potential, functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils. Environmental Science, 2014, 35(3): 1144-1150. |
| 陈晓娟, 吴小红, 简燕, 等. 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析. 环境科学, 2014, 35(3): 1144-1150. | |
| 19 | Liu Y Y, Wang S, Li S Z, et al. Advances in molecular ecology on microbial functional genes of carbon cycle. Microbiology China, 2017, 44(7): 1676-1689. |
| 刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展. 微生物学通报, 2017, 44(7): 1676-1689. | |
| 20 | Garritano A N, Song W, Thomas T. Carbon fixation pathways across the bacterial and archaeal tree of life. PNAS Nexus, 2022, 1(5): 1-12. |
| 21 | Correa S S, Schultz J, Lauersen K J, et al. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. Journal of Advanced Research, 2023, 47(Suppl C): 75-92. |
| 22 | Maestre F T, Delgado-Baquerizo M, Jeffries T C, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15684-15689. |
| 23 | Wiseschart A, Mhuantong W, Tangphatsornruang S, et al. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiology, 2019, 19(1): 144. |
| 24 | Huang Q, Huang Y, Wang B, et al. Metabolic pathways of CO2 fixing microorganisms determined C-fixation rates in grassland soils along the precipitation gradient. Soil Biology and Biochemistry, 2022, 172: 108764. |
| 25 | Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 2012, 63(6): 2325-2342. |
| 26 | Claassens N J, Sousa D Z, Dos Santos V A P M, et al. Harnessing the power of microbial autotrophy. Natural Reviews Microbiology, 2016, 14(11): 692-706. |
| 27 | Long X E, Yao H Y, Wang J, et al. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils. Environmental Science & Technology, 2015, 49(12): 7152-7160. |
| 28 | Nowak M E, Beulig F, von Fischer J, et al. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette. Biogeosciences, 2015, 12(3): 7169-7183. |
| 29 | Liu Z. Microbial pathways of atmospheric carbon dioxide fixation in soils in the Mu Us Desert. Beijing: Beijing Forestry University, 2019. |
| 刘振. 毛乌素沙地土壤固定大气二氧化碳的微生物途径. 北京: 北京林业大学, 2019. | |
| 30 | Sun Y Q. Community structure of microorganisms in lichen crusts and its function on carbon sequestration in the Mu Us Desert. Beijing: Beijing Forestry University, 2019. |
| 孙永琦. 毛乌素沙地地衣结皮层微生物的群落结构及其固碳功能. 北京: 北京林业大学, 2019. | |
| 31 | Evans M C, Buchanan B B, Arnon D I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences of the United States of America, 1966, 55(4): 928-934. |
| 32 | Hall J R, Mitchell K R, Jackson-Weaver O, et al. Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Applied and Environmental Microbiology, 2008, 74(15): 4910-4922. |
| 33 | Gao L, Liu L, Lv A P, et al. Reversed oxidative TCA (roTCA) for carbon fixation by an Acidimicrobiia strain from a saline lake. The ISME Journal, 2024, 18(1), doi:https://doi.org/10.1093/ismejo/wrae147. |
| 34 | Zarzycki J, Brecht V, Müller M, et al. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21317-21322. |
| 35 | Rao M P N, Luo Z H, Dong Z Y, et al. Metagenomic analysis further extends the role of Chloroflexi in fundamental biogeochemical cycles. Environmental Research, 2022, 209(Suppl C): 112888. |
| 36 | Atomi H. Microbial enzymes involved in carbon dioxide fixation. Journal of Bioscience and Bioengineering, 2002, 94(6): 497-505. |
| [1] | Chao ZHANG, Rui-rui YAN, Qing-wei LIANG, Ri-su NA, Tong LI, Xiu-fang YANG, Yu-hai BAO, Xiao-ping XIN. Study on soil physical and chemical properties and carbon and nitrogen sequestration of grassland under different utilization modes [J]. Acta Prataculturae Sinica, 2021, 30(4): 90-98. |
| [2] | Saiyaremu·Halifu, Aikebaier·Yilahong, SONG Rui-Qing, Abudousaimaiti·Naihemaiti. Correlations between soil microbial biomass and soil physical and chemical properties in grassland in Chabuchaer County [J]. Acta Prataculturae Sinica, 2017, 26(9): 36-44. |
| [3] | LU Guang-xin, WANG Jun-bang, CHEN Xiu-rong, YANG Cheng-de, XUE Li. Study on a laccase-producing fungus from alpine grassland soil in eastern Qilian Mountains: screening, identification, and activity analyses [J]. Acta Prataculturae Sinica, 2014, 23(2): 243-252. |
| [4] | REN Ji-zhou, LIN Hui-long. Study on the simulation methods of grassland soil organic carbon: a review [J]. Acta Prataculturae Sinica, 2013, 22(6): 280-294. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||