Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (5): 49-60.DOI: 10.11686/cyxb20140506
• Orginal Article • Previous Articles Next Articles
YU Wen-chao1,2,3,SONG Xiao-long2,3,XIU Wei-ming2,3,ZHANG Gui-long2,3,ZHAO Jian-ning2,3,YANG Dian-lin1,2,3
Received:
2013-09-04
Online:
2014-10-20
Published:
2014-10-20
CLC Number:
YU Wen-chao,SONG Xiao-long,XIU Wei-ming,ZHANG Gui-long,ZHAO Jian-ning,YANG Dian-lin. Effects of additional nitrogen on litter decomposition in Stipa baicalensis grassland[J]. Acta Prataculturae Sinica, 2014, 23(5): 49-60.
Reference: [1] Bai Y F, Wu J G, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands[J]. Global Change Biology, 2010, 16(1): 358-372.[2] Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest system[J]. Environmental Reviews, 1997, 5: 1-25.[3] Fang H, Mo J M. Effects of nitrogen deposition on forest litter decomposition[J]. Acta Ecologica Sinica, 2006, 26(9): 3127-3136.[4] Bao F, Zhou G S. Review of research advances in soil respiration of grassland in China[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 713-726.[5] Rovira P, Rovira R. Fitting litter decomposition datasets to mathematical curves: towards a generalized exponential approach[J]. Geoderma, 2010, 155(34): 329-343.[6] Wang X E, Xue L, Xie T F. A review on litter decomposition[J]. Chinese Journal of Soil Science, 2009, 40(6): 1473-1478.[7] Zhong H P, Du Z C. The relationship between the climatic factors and the litter decomposition of Trifolium pratense, Dactylis glomerata in Mountains of Eastern Sichuan[J]. Grassland of China, 1997, 6: 29-32.[8] Ebermayer E. Die physikalischen Eigenschaften der Streudecke und ihr Einfluss auf die physikalische Beschaffenheit des Bodens[M]. Berlin: Verlag von Julius Springer, 1876: 116.[9] Bontti E E, Decant J P, Munson S M, et al. Litter decomposition in grasslands of Central North America (US Great Plains)[J]. Global Change Biology, 2009, 15(5): 1356-1363.[10] Niu S L, Yang H J, Zhang Z, et al. Non additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe[J]. Ecosystems, 2009, 12(6): 915-926.[11] Luca B, Alexandre B, Jonathan H, et al. High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation[J]. Global Change Biology, 2012, 18(3): 1163-1172. [12] Song C C, Liu D Y, Yang G S, et al. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China[J]. Ecological Engineering, 2011, 37(10): 1578-1582.[13] Hobbie S E. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition[J]. Ecosystems, 2005, 8(6): 644-656.[14] Prescott C E. Does nitrogen availability control rates of litter decomposition in forests?[J]. Plant and Soil, 1995, 62(83-88): 168-169.[15] Yang D L, Han G D, Hu Y G, et al. Effects of grazing intensity on plant diversity and aboveground biomass of Stipa baicalensis grassland[J]. Chinese Journal of Ecology, 2006, 25(12): 1470-1475.[16] Xiao S S, Dong Y S, Qi Y C, et al. Effects of mineral fertilizer addition on leaf functional traits and photosynthetic characteristics of Leymus chinensis from a temperate grassland in Inner Mongolia in China[J]. Acta Scientiae Circumstantiae, 2010, 30(12): 2535-2543.[17] Tilman D, Wedin D. Plant traits and resource reduction for five grasses growing on a nitrogen gradient[J]. Ecology, 1991, 72(2): 685-700.[18] Fan G Y, Zhang J N, Wang Q, et al. Response of the aboveground biomass allocation of main species to grazing gradients in Stipa baicalensis grassland[J]. Grassland and Turf, 2011, 31(2): 79-84.〖HJ2.2mm〗[19] Nelson D W, Sommers L E. Total carbon, organ carbon, and organic matter[A]. Methods of Soil Analysis[M]. Madison: ASA Publication, 1982: 121-129.[20] Zhang Y L, Xu A M, Shang H B, et al. Determination study of total nitrogen in soil and plant by continuous flow analytical system[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 2006, 34(10): 128-132.[21] Murphy J, Riley J P. A modified single solution method for determinantion of phosphate in natural waters[J]. Analytica Chimica Acta, 1962, 26: 31-36.[22] Bao S D. Agricultural soil decomposition (3rd Edition)[M]. Beijing: China Agriculture Press, 2000.[23] Petersen R C, Cummins K W, Ward G M. Microbial and animal processing of detritus in a wood land stream[J]. Ecological Monographs, 1989, 59: 21-39.[24] Li X F, Han S J, Guo Z L, et al. Decomposition of pine needles and twigs on and under the litter layer in the natural Korean pine broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(3): 1-6.[25] Chen Z Z, Wang S P. China typical steppe ecosystem[M]. Beijing: Science Press, 2000: 204-222.[26] Wang Q B, Li L H, Bai Y F, et al. Effects of simulated climate change on the decomposition of mixed litter in three steppe communities[J]. Acta Phytoecologica Sinica, 2000, 24(6): 674-679.[27] Guo Z L, Zheng J P, Ma Y D, et al. Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains,China[J]. Acta Ecologica Sinica, 2006, 26(4): 1037-1046.[28] Song X Z, Jiang H, Zhang H L, et al. A review on the effects of global environment change on litter decomposition[J]. Acta Ecologica Sinica, 2008, 28(9): 4414-4423.[29] Cui Y, Wang S L, Yu X J, et al. Effects of forest soil fauna on early-stage litter decomposition and nutrient release[J]. Chinese Journal of Ecology, 2012, 31(11): 2709-2715.[30] Barajas G, Alvarez J. The relationships between litter fauna and rates of litter decomposition in a tropical rain foreat[J]. Applied in Soil Ecology, 2003, 24: 91-100.[31] Yahdjian L, Sala O, Austin A T. Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian steppe[J]. Ecosystems, 2006, 9: 128-141.[32] Gusewell S, Gessner M O. N∶P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[J]. Functional Ecology, 2009, 23: 211-219.[33] Liu P, Huang J, Han X, et al. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China[J]. Applied Soil Ecology, 2006, 34(23): 266-275.[34] Tu L H, Dai H Z, Hu T X, et al. Effect of simulated nitrogen deposition on litter decomposition in a Bambusa pervariabilis ×Dendrocala mopsi plantation, Rainy Area of West China[J]. Acta Ecologica Sinica, 2011, 31(5): 1547-1557.[35] Kondo R, Iimori T, Imamura H, et al. Polymerization of DHP and depolymerization of DHP glucoside by lignin oxidizing enzymes[J]. Biotechnology, 1990,13(23): 181-188.[36] Li X F, Han S J, Hu Y L, et al. Decomposition of litter organic matter and its relations to C, N and Prelease in secondary conifer and broadleaf mixed forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2008, 19(2): 245-251.[37] Parton W, Silver W L, Burke I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315: 361-364.[38] Zhao H M, Huang G, Ma J, et al. Study on dynamic status of litter decomposition and nutrients of typical desert plants[J]. Arid Zone Research, 2012, 29(4): 628-634.[39] Ball B A, Bradford M A, Hunter M D. Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay[J]. Ecosystems, 2009, 12(1): 87-100.[40] Tu L H, Hu T X, Zhang J, et al. Effect of simulated nitrogen deposition on nutrient release in decomposition of several litter fractions of two bamboo species[J]. Acta Ecologica Sinica, 2011, 31(6): 1547-1557.[41] Hattenschwiler S, Jorgensen H B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest[J]. Journal of Ecology, 2010, 98(4): 754-763.[42] Zhang C H, Li S G, Zhang L M, et al. Effects of species and low dose nitrogen addition on litter decomposition of three dominant grasses in Hulun Buir Meadow Steppe[J]. Journal of Resources and Ecology, 2013, 4(1): 20-26. 参考文献:[1] Bai Y F, Wu J G, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands[J]. Global Change Biology, 2010, 16(1): 358-372.[2] Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest system[J]. Environmental Reviews, 1997, 5: 1-25.[3] 方华, 莫江明. 氮沉降对森林凋落物分解的影响[J]. 生态学报, 2006, 26(9): 3127-3136.[4] 鲍芳, 周广胜. 中国草原土壤呼吸作用研究进展[J]. 植物生态学报, 2010, 34(6): 713-726.[5] Rovira P, Rovira R. Fitting litter decomposition datasets to mathematical curves: towards a generalized exponential approach[J]. Geoderma, 2010, 155(3-4): 329-343.[6] 王相娥, 薛立, 谢腾芳. 凋落物分解研究综述[J]. 土壤通报, 2009, 40(6): 1473-1478.[7] 钟华平, 杜占池. 川东中高山地区红三叶、鸭茅凋落物分解速率与气候因子之间的定量关系[J]. 中国草地学报, 1997, 6: 29-32.[8] Ebermayer E. Die physikalischen Eigenschaften der Streudecke und ihr Einfluss auf die physikalische Beschaffenheit des Bodens[M]. Berlin: Verlag von Julius Springer, 1876: 116.[9] Bontti E E, Decant J P, Munson S M, et al. Litter decomposition in grasslands of Central North America (US Great Plains)[J]. Global Change Biology, 2009, 15(5): 1356-1363.[10] Niu S L, Yang H J, Zhang Z, et al. Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe[J]. Ecosystems, 2009, 12(6): 915-926.[11] Luca B, Alexandre B, Jonathan H, et al. High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation[J]. Global Change Biology, 2012, 18(3): 1163-1172. [12] Song C C, Liu D Y, Yang G S, et al. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China[J]. Ecological Engineering, 2011, 37(10): 1578-1582.[13] Hobbie S E. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition[J]. Ecosystems, 2005, 8(6): 644-656.[14] Prescott C E. Does nitrogen availability control rates of litter decomposition in forests?[J]. Plant and Soil, 1995, 62(83-88): 168-169.[15] 杨殿林, 韩国栋, 胡跃高, 等. 放牧对贝加尔针茅草原群落植物多样性和生产力的影响[J]. 生态学杂志, 2006, 25(12): 1470-1475.[16] 肖胜生, 董云社, 齐玉春, 等. 内蒙古温带草原羊草叶片功能特性与光合特征对外源氮输入的响应[J]. 环境科学学报, 2010, 30(12): 2535-2543.[17] Tilman D, Wedin D. Plant traits and resource reduction for five grasses growing on a nitrogen gradient[J]. Ecology, 1991, 72(2): 685-700.[18] 范国艳, 张静妮, 王琦, 等. 贝加尔针茅草原主要植物地上生物量分配对放牧梯度的响应[J]. 草原与草坪, 2011, 31(2): 79-84.〖HJ2.2mm〗[19] Nelson D W, Sommers L E. Total carbon, organ carbon, and organic matter[A]. Methods of Soil Analysis[M]. Madison: ASA Publication, 1982: 121-129.[20] 张英利, 许安民, 尚浩博, 等. AA3型连续流动分析仪测定土壤和植物全氮的方法研究[J]. 西北农林科技大学学报(自然科学版), 2006, 34(10): 128-132.[21] Murphy J, Riley J P. A modified single solution method for determinantion of phosphate in natural waters[J]. Analytica Chimica Acta, 1962, 26: 31-36.[22] 鲍士旦. 土壤农化分解(第3版)[M]. 北京: 中国农业出版社, 2000.[23] Petersen R C, Cummins K W, Ward G M. Microbial and animal processing of detritus in a wood land stream[J]. Ecological Monographs, 1989, 59: 21-39.[24] 李雪峰, 韩士杰, 郭忠玲, 等. 红松阔叶林内凋落物表层与底层红松枝叶的分解动态[J]. 北京林业大学学报, 2006, 28(3): 1-6.[25] 陈佐忠, 汪诗平. 中国典型草原生态系统[M]. 北京: 科学出版社, 2000: 204-222.[26] 王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]. 植物生态学报, 2000, 24(6): 674-679.[27] 郭忠玲, 郑金萍, 马元丹, 等. 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J]. 生态学报, 2006, 26(4): 1037-1046.[28] 宋新章, 江洪, 张慧玲, 等. 全球环境变化对森林凋落物分解的影响[J]. 生态学报, 2008, 28(9): 4414-4423.[29] 崔洋, 汪思龙, 于小军, 等. 森林土壤动物对凋落物早期分解及养分释放的影响[J]. 生态学杂志, 2012, 31(11): 2709-2715.[30] Barajas G, Alvarez J. The relationships between litter fauna and rates of litter decomposition in a tropical rain foreat[J]. Applied in Soil Ecology, 2003, 24: 91-100.[31] Yahdjian L, Sala O, Austin A T. Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian steppe[J]. Ecosystems, 2006, 9: 128-141.[32] Gusewell S, Gessner M O. N∶P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[J]. Functional Ecology, 2009, 23: 211-219.[33] Liu P, Huang J, Han X, et al. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China[J]. Applied Soil Ecology, 2006, 34(2-3): 266-275.[34] 涂利华, 戴洪忠, 胡庭兴, 等. 模拟氮沉降对华西雨屏区撑绿杂交竹凋落物分解的影响[J]. 生态学报, 2011, 31(5): 1547-1557.[35] Kondo R, Iimori T, Imamura H, et al. Polymerization of DHP and depolymerization of DHP-glucoside by lignin oxidizing enzymes[J]. Biotechnology, 1990,13(2-3): 181-188.[36] 李雪峰, 韩士杰, 胡艳玲, 等. 长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系[J]. 应用生态学报, 2008, 19(2): 245-251.[37] Parton W, Silver W L, Burke I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315: 361-364.[38] 赵红梅, 黄刚, 马健, 等. 典型荒漠植物凋落物分解及养分动态研究[J]. 干旱区研究, 2012, 29(4): 628-634.[39] Ball B A, Bradford M A, Hunter M D. Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay[J]. Ecosystems, 2009, 12(1): 87-100.[40] 涂利华, 胡庭兴, 张建, 等. 模拟氮沉降对两种竹林不同凋落物组分分级过程养分释放的影响[J]. 生态学报, 2011, 31(6): 1547-1557.[41] Hattenschwiler S, Jorgensen H B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest[J]. Journal of Ecology, 2010, 98(4): 754-763.[42] Zhang C H, Li S G, Zhang L M, et al. Effects of species and low dose nitrogen addition on litter decomposition of three dominant grasses in Hulun Buir Meadow Steppe[J]. Journal of Resources and Ecology, 2013, 4(1): 20-26. |
[1] | XU Sha,GONG Ji-rui,ZHANG Zi-yu,LIU Min,WANG Yi-hui,LUO Qin-pu. The ecological stoichiometry of dominant species in different land uses type of grassland [J]. Acta Prataculturae Sinica, 2014, 23(6): 45-53. |
[2] | LI Jin-hui,LU Xin,ZHOU Zhi-yu,ZHAO Ping,JIN Qian,ZHOU Yuan-yuan. Phosphorus contents in the rhizosphere and bulk soil under Amorpha fruticosa established in different years [J]. Acta Prataculturae Sinica, 2014, 23(6): 61-68. |
[3] | YAN Zhong-qing,QI Yu-chun,DONG Yun-she,PENG Qin,SUN Liang-jie,JIA Jun-qiang,CAO Cong-cong,GUO Shu-fang,HE Yun-long. Nitrogen cycling in grassland ecosystems in response to climate change and human activities [J]. Acta Prataculturae Sinica, 2014, 23(6): 279-292. |
[4] | MA Lin-ya,CUI Xia,FENG Qi-sheng,LIANG Tian-gang. Dynamic changes of grassland vegetation coverage from 2001 to 2011 in Gannan Prefecture [J]. Acta Prataculturae Sinica, 2014, 23(4): 1-9. |
[5] | WANG Chong,LIN Hui-long,HE Lan,CAO Ao-cheng. Research on responses of Eupatorium adenophorum’s potential distribution to climate change [J]. Acta Prataculturae Sinica, 2014, 23(4): 20-30. |
[6] | ZHANG Yu-xia,YAO Tuo,WANG Guo-ji,MA Wen-wen,MA Wen-bin. Characteristics of vegetation and soil inorganic nitrogen concentrations under different disturbed habitats in a weak alpine ecosystem [J]. Acta Prataculturae Sinica, 2014, 23(4): 245-252. |
[7] | YANG Hong-fei,Gang Cheng-cheng,MU Shao-jie,ZHANG Chao-bin,ZHOU Wei,LI Jian-long. Analysis of the spatio-temporal variation in net primary productivity of grassland during the past 10 years in Xinjiang [J]. Acta Prataculturae Sinica, 2014, 23(3): 39-50. |
[8] | GAO Ya,LIN Hui-long. The prospects for rangeland ecosystem services evaluation [J]. Acta Prataculturae Sinica, 2014, 23(3): 290-301. |
[9] | CHANG Tao,WANG Han-qi,YANG Cheng-de,WANG Ying,YANG Xiao-li,XUE Li,CHEN Xiu-rong,XU Chang-lin. Identification and evaluation of biological control potential of B-401 endophytic bacteria in grasses on alpine grasslands [J]. Acta Prataculturae Sinica, 2014, 23(3): 282-289. |
[10] | ZHANG Zhi-yong,JIAN Qiu,SONG Wen-cheng,SUN Xing,YANG Bang-bao. Residues of azoxystrobin in forages and soils [J]. Acta Prataculturae Sinica, 2014, 23(3): 356-361. |
[11] | WANG Jian-lin, ZHONG Zhi-ming, WANG Zhong-hong, YU Cheng-qun, SHEN Zhen-xi, ZHANG Xian-zhou, HU Xing-xiang, Dacizhuoga. Soil C/P distribution characteristics of alpine steppe ecosystems in the Qinhai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2014, 23(2): 9-19. |
[12] | PING Xiao-yan, LIN Chang-cun, BAI Yu, LIU Qi-tang, LU Xin-shi. The ecological effects of planting Apocynum venetum in the plain desert of the Altay Region, Xinjiang Province [J]. Acta Prataculturae Sinica, 2014, 23(2): 49-58. |
[13] | LIU Ren-tao, ZHU Fan. Monthly changes of ground arthropods in artificial Caragana intermedia plantations in desert steppe [J]. Acta Prataculturae Sinica, 2014, 23(2): 296-304. |
[14] | WANG Jing, ZHAO Meng-li, Willms W, HAN Guo-dong, GAO Xin-lei, WU Yu-shanhina). Productivity responses of different functional groups to litter removal in typical grassland of Inner Mongolia [J]. Acta Prataculturae Sinica, 2013, 22(6): 31-38. |
[15] |
GAO Li-jie, HOU Jian-hua, AN Zhe, GAO Bao-jia.
Characteristics of soil fauna community structure in forest-steppe ecotone on Southeastern Inner Mongolia Plateau [J]. Acta Prataculturae Sinica, 2013, 22(4): 27-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||