Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (5): 133-142.DOI: 10.11686/cyxb20140515
• Orginal Article • Previous Articles Next Articles
TIAN Chen-xia1,2,3,ZHANG Yong-mei4,WANG Kai4,ZHANG Wan1
Received:
2013-09-04
Online:
2014-10-20
Published:
2014-10-20
CLC Number:
TIAN Chen-xia,ZHANG Yong-mei,WANG Kai,ZHANG Wan. The anatomical structure responses in alfalfa to salinity-alkalinity stress of NaHCO3[J]. Acta Prataculturae Sinica, 2014, 23(5): 133-142.
Reference: [1] Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115: 1-22.[2] Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil, 2010, 326(1): 45-60.[3] Peng J Q, Liu Y Q, Yang Y F, et al. Importance and technology progress in containing the soil stalinization and desertification[J]. Tianjin Agricultural Sciences, 2008, 14(4): 26-29. [4] Niu D L, Wang Q J. Research progress on saline-alkali field control[J]. Chinese Journal of Soil Science, 2002, 33(6): 449-455. [5] Yu Z R. Chinese soil salinization and countermeasures research[EB/OL]. htt p:// ccsas. org. cn/zhi l i/t uranggai l i ang/ 200709/89_3. html, 2007, 09-13. [6] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review Plant Physiology Plant Molecular Biology, 2000, 51: 463-499. [7] Yang X Y, Yang J S, Liu G M, et al. Changes in soil fertilities and crop growth after transferring paddy soil to upland soil[J]. Chinese Journal of Soil Science, 2006, (4): 675-679. [8] Zhao K F. Plant salt resistance physiology[M]. Beijing: China Science and Technology Press, 1993: 157-159. [9] Sairamr K, Veerabhadra K R, Srivstava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxid ative stress, antioxidant activity and osmolyte concentration[J]. Plant Science, 2002, 163: 1037-1046. [10] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review Plant Biology, 2008, 59: 651-681. [11] Debez A, Ben Hamed K, Grignon C, et al. Salinity effects on germination, growth, and seed production of the halophyte Cacile maritime[J]. Plant Soil, 2004, 262: 179-189. [12] Flower T J. Genetics of plant mineral nutrition. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55: 307-319. [13] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview[J]. Archives of Biochemistry Biophysics, 2005, 444: 139-158. [14] Sun H G, Li G L, Guan J Y. Research on salt-tolerance capacity of different alfalfa varieties[J]. Jilin Forestry Scicnce and Technology, 2011, 40(2): 1-4. [15] Chen W X. The role of legumes-root nodule bacteria nitrogen fixing system in development of west area of China[J]. Acta Agrestia Sinica, 2004, 12(1): 12. [16] Shi Y C. Extricate ourselves from the dilemma of desertification control and return of reclaimed farmland(to Afforested Area)[J]. Acta Agrestia Sinica, 2004, 12(2): 83-86. [17] Wang W B, Jin R X, Deng X P, et al. Phydiological and biological responses of alfalfa shoots and roots to salt stress[J]. Journal of Northwest A & F University(Natural Science Edition), 2009, 37(5): 217-223. [18] Wang X P, Li W Q. Alfalfa Quality Inspection analysis of several different varieties[J]. Contemporary Animal Husbandry, 2004, (5): 39. [19] Wang J F, Li Y Q. The effect of salinity pasture improved saline-alkali soil[J]. 山Shandong Journal of Animal Husbandry and Veterinary Science, 1995, (5): 20-21. [20] Tian F P, Wang S M, Guo Z G, et al. Relationship between proline content and water content, single plant dry matter, and drought resistance of alfalfa[J]. Pratacultural Science, 2004, 21(1): 3-6. [21] Wan C G, Zou X Y. A study on salt tolerance of Puccinellia chinam poensis and its desalinizing effect on the soil[J]. Pratacultural Science, 1990, 7(3): 3-8. [22] Elsh M A, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants[J]. Journal of Plant Nutrition, 1996, 19(5): 717-728. [23] Sun G R, Yan X F, Xiao W. Preliminary study on physiological mechanism of saline-alkali tolerance of Puccinellia tenuiflora[J]. Journal of Wuhan Botanical Research, 1997, 15(2): 162-166. [24] Sun G R, Guan C, Yan X F. Effect of sodium carbonate stress on amino acid contents of Puccinellia Tenuiflora seedlings. [J]. Bulletin of Botanical Research, 2000, 20(1): 69-72. [25] Gao H M, Wang J B, Sun G R. Further study of physiological mechanism of the saline-alkali tolerance of puccinellia tenuiflora[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(8): 1589-1594. [26] Yan X F, Xiao W, Sun G R, et al. Physiological reaction of seedling of Puccinellia tenuiflora under the condition of salt stress[J]. Heilongjiang Journal of Animal Science and Veterinary Medicine, 1994, 3: 1-3. [27] Zhou C, Zhang Z, Yang Y F. Physiological reaction of seedlings of experimental population of Leymus chinensis under different gradient of salt-alkali stress[J]. Jornal of Northeast Normal University(Natural Science Edition), 2003, 35(4): 62-67. [28] Yang Y F, Liu G C, Zhang B T. An analysis of age structure and the strategy for asexual propagation of Aneurolepidium Chinense population[J]. Acta Botanica Sinica, 1995, 37(2): 147-1531. [29] Shi D C, Yin L J. Strain responses in Na2CO3-stressed Leymus Chinenses seedlings and their mathematical analysis[J]. Journal of Integrative Plant Biology, 1992, 34(5): 386-3931. [30] Shi D C, Sheng Y M, Zhao K F. Atress effects of mixed salts with various salinities on the seedlings of Aneuro-lepidium chinense[J]. Acta Botanica Sinica, 1998, 40(12): 1136-1421. [31] Yin L J, Zhu L. Physiologcal responses and adaptive faculty for Leymus Chinensis seedlings to saline-alkali stress[J]. Journal of Northeast Normal University, 1989, (4): 87-951. [32] Li X Y, Lin J X, Li X J, et al. Growth adaptation and Na+ and K+ metabolism responses of Leymus chinensis seedlings under salt and alkali stresses[J]. Acta Prataculturae Sinica, 2013, 22(1): 201-209. [33] Zhang M, Cai R G, Li H Z, et al. Responses of seedling growth and endogenous hormone contents in different wheat cultivars to salt stress[J]. Acta Ecologica Sinica, 2008, 28(1): 310-320. [34] Mao M Y, Fang Z. Effects of NaHCO3 stress on the growth and some physiological indexes in of oat seedlings[J]. Journal of Anhui Agricultural Sciences, 2009, 37(10): 4468-4470. [35] Wang B, Song F B. Physiological responses and adaptive capacity of oats to saline-alkali stress[J]. Ecology and Enbironment, 2006, 15(3): 625-629. [36] Zhang L, Kang L P. Effect of drought stress on micro-structure of cowpea seedling's leaves and roots[J]. China Vegetables, 2012, (10): 66-74. [37] Liu Y Q, Ma T R, Wang F, et al. Physiological response and adaptive capacity of potato to saline-alkali soil[J]. Chinese Journal of Soil Science, 2011, 42(6): 1388-1392. [38] Li B, Zhao H B, Yang W R, et al. Effect of adaptive capacity of alfalfa seedlings to NaHCO3 stress[J]. Seed, 2010, 29(2): 22-25. [39] Wang X W, Lin C H, Li X F, et al. Effects of NaHCO3 stress on physiological characteristics of Medicago sativa[J]. Pratacultural Science, 2007, 24(2): 26-29. [40] Yang Q C, Sun Y, Su J K, et al. The proceedings of studying on Alfalfa salt tolerant breeding and genitic basis[J]. Grassland of China, 2005, (9): 253-255. [41] Yan S J, Ma H L, Cao Z Z. Study on the salt-tolerance of transgenic plants of alfalfa[J]. Journal of Gansu Agricultural University, 2006, 41(5): 91-94. [42] Serrato Valenti G, Ferro M, Ferraro D, et al. Anatomical changes in Prosopis tamarugo Phil. Seeding growing at different level of NaCl salinity[J]. Annals of Botany (London), 1991, 68: 47-53. [43] Shannon M C, Grieve C M, Francois L E. Whole plant response to salinity[A]. In: Wilkinson R E. Plant Environment Interactions[M]. New York: Marcel Dekker. Inc., 1994: 199-224. [44] Ke Y Q, Pan Y G. Effects of salt stress on the ul trastructure of chloroplast and the activities of some protective enzymes in leaves of sweet potato[J]. Acta Photophysiologica Sinica, 1999, 25(4): 229-233. [45] Aparajita Das-Chatterjee, Lily Goswami, Susmita Maitra, et al. Introgression of a novel salt tolerant Lmyo inositol 1 phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms[J]. FEBS Letters, 2006, 580: 3980-3988. [46] Jiang Y X, Yuan Q H. Effects of salt stress on seedling growth of alfalfa (Medicago sativa)and ion distribution in different alfalfa organs[J]. Acta Prataculturae Sinica, 2011, 20(2): 134-139. [47] Liu J, Cai H, Liu Y, et al. A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2013, 22(2): 250-256. [48] Zhang L Q, Zhang F Y, Hasi A G L. Research progress on alfalfa salt tolerance[J]. Acta Prataculturae Sinica, 2012, 21(6): 296-305. [49] Jiang J, Yang B L, Xia T, Yu S M, et al. Analysis of genetic diversity of salt tolerant alfalfa germplasms[J]. Acta Prataculturae Sinica, 2011, 20(5): 119-125. [50] Li Y, Liu G B, Gao H W, et al. A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2010, 19(4): 79-86. [51] Zhou Y, Wang H, Zhang S Z. Botany (the book)[M]. Beijing: Beijing Normal University Press, 1988: 93. [52] Wang C Y. The discussion on ecolgical amelioration of salt-effected soil under growing rice condition[J]. Chinese Journal of Soil Science, 2002, 33(2): 84-95. [53] Castro-Diez P, Puyravaud J P, Cornelissen J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J]. Oecologia, 2000, 124(4): 476-486. [54] Yin S K. Anatomy of seed plants (Second Edition)[M]. Li Z L, translate. Shanghai: Shanghai Science and Technology Press, 1982: 1-4. [55] Wang Y Z, Wang X L, Li W. Obervation on leaf structure of some species in desert steppe[J]. Journal of Lanzhou University, 1983, 19(3): 87-96. [56] Liu J Q. Xeric structure of different ecological types of desert plants[J]. Acta Phytoecologica et Geobotanica Sinica, 1982, 6(4): 314-319. [57] Sun Q Z, Wang Y Q, Yan Z J, et al. Inner Mongolia desert area several dominant plant adaptation to drought[J]. Forage and Feed, 1991, (3): 12-14. [58] Zheng W J, Xu L Y, Wang X L. Approach to quantitative multifactorial evaluation method of forage value[J]. Acta Prataculturae Sinica, 1993, 2(1): 78-80. [59] Zhao M R, Jia H X. Ultrastructural study of several typical salt plant[J]. Journal of Arid Land Resources & Environment, 1993, 7(3): 334-337. [60] Jia H X, Zhao M R. Several typical salt plant anatomy of the hexi corridor in Gansu Province[J]. Journal of Gansu Agricultural University, 1983, (4): 64-67. [61] Zhu Y S, Zhang Y, Hu Z Z, et al. Studies on the microscopic structure of puccinellia tenuiflora leaves under different salinity stress[J]. Grassland of China, 2001, 32(3): 19-22. [62] Gong M, Ding N C, He Z Y, et al. Correlation between lipid preoxidation damage and ultrastructural changes of mesophyll cels in barley and wheat seedlings during salt stress[J]. Journal of Integrative Plant Biology, 1989, 31(11): 841-846. [63] Li R M. Zhou G Q, Fu S P, et al. Leaf anatomical structure of sesuvium portulacastrum L.under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(2): 0287-0292. [64] Zhu Y S, Zhang Y, Hu Z Z, et al. Studies on the microscopic structure of puccinellia tenuiflora stem under salinity stress.[J]. Grassland of China, 2000, (5): 6-9. 参考文献:[1] Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115: 1-22.[2] Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil, 2010, 326(1): 45-60.[3] 彭津琴, 刘永强, 杨玉芳, 等. 遏制土壤盐碱化、荒漠化的必要性及技术进展[J]. 天津农业科学, 2008, 14(4): 26-29. [4] 牛东玲, 王启基. 盐碱地治理研究进展[J]. 土壤通报, 2002, 33(6): 449-455. [5] 宇振荣. 中国土地盐碱化及其防治对策研究[EB/OL]. htt p:// ccsas. org. cn/zhi l i/t uranggai l i ang/ 200709/89_3. html, 2007-09-13. [6] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review Plant Physiology Plant Molecular Biology, 2000, 51: 463-499. [7] 杨晓英, 杨劲松, 刘广明, 等. 盐碱地稻田旱作后土壤肥力变化及其对作物生长的影响[J]. 土壤通报, 2006, (4): 675-679. [8] 赵可夫. 植物抗盐生理[M]. 北京: 中国科学技术出版社, 1993: 157-159. [9] Sairamr K, Veerabhadra K R, Srivstava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxid-ative stress, antioxidant activity and osmolyte concentration[J]. Plant Science, 2002, 163: 1037-1046. [10] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review Plant Biology, 2008, 59: 651-681. [11] Debez A, Ben Hamed K, Grignon C, et al. Salinity effects on germination, growth, and seed production of the halophyte Cacile maritime[J]. Plant Soil, 2004, 262: 179-189. [12] Flower T J. Genetics of plant mineral nutrition. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55: 307-319. [13] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview[J]. Archives of Biochemistry Biophysics, 2005, 444: 139-158. [14] 孙宏刚, 李桂玲, 官甲义. 不同苜蓿品种耐盐能力的研究[J]. 吉林林业科技, 2011, 40(2): 1-4. [15] 陈文新. 豆科植物根瘤菌固氮体系在西部大开发中的作用[J]. 草地学报, 2004, 12(1): 12. [16] 石元春. 走出治沙与退耕中的误区[J]. 草地学报, 2004, 12(2): 83-86. [17] 王文斌, 金润熙, 邓西平, 等. 苜蓿幼苗芽、根器官对盐胁迫的生理生化响应[J]. 西北农林科技大学学报, 2009, 37(5): 217-223. [18] 王学鹏, 李文全. 几种不同品种紫花苜蓿质量检验分析报告[J]. 当代畜牧, 2004, (5): 39. [19] 王金芬, 李玉芹. 耐盐碱牧草改良盐碱土的效果[J]. 山东畜牧兽医, 1995, (5): 20-21. [20] 田福平, 王锁民, 郭正刚, 等. 紫花苜蓿脯氨酸含量和含水量、单株干质量与抗旱性的相关性研究[J]. 草业科学, 2004, 21(1): 3-6. [21] 万长贵, 邹秀莹. 碱茅草耐盐和脱盐机理初探[J]. 草业科学, 1990, 7(3): 3-8. [22] Elsh M A, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants[J]. Journal of Plant Nutrition, 1996, 19(5): 717-728. [23] 孙国荣, 阎秀峰, 肖玮. 星星草耐盐碱生理机制的初步研究[J]. 武汉植物学研究, 1997, 15(2): 162-166. [24] 孙国荣, 关畅, 阎秀峰. Na2CO3 胁迫对星星草幼苗游离氨基酸含量的影响[J]. 植物研究, 2000, 20(1): 69-72. [25] 高红明, 王建波, 孙国荣. 星星草耐盐碱生理机制再探讨[J]. 西北植物学报, 2005, 25(8): 1589-1594. [26] 阎秀峰, 肖玮, 孙国荣, 等. 盐胁迫下星星草幼苗的生理反应-I. 盐胁迫对星星草幼苗生长的影响[J]. 黑龙江畜牧兽医, 1994, 3: 1-3. [27] 周婵, 张卓, 杨允菲. 实验羊草种群幼苗对不同梯度盐碱胁迫的生理响应[J]. 东北师大学报自然科学版, 2003, 35(4): 62-67. [28] 杨允菲, 刘庚长, 张宝田. 羊草种群年龄结构及无性繁殖对策的分析[J]. 植物学报, 1995, 37(2): 147-1531. [29] 石德成, 殷立娟. Na2CO3胁迫下羊草苗的胁变反应及其数学分析[J]. 植物学报, 1992, 34(5): 386-3931. [30] 石德成, 盛艳敏, 赵可夫. 不同盐浓度的混合盐对羊草苗是胁迫反应[J]. 植物学报, 1998, 40(12): 1136-1421. [31] 殷立娟, 祝玲. 羊草苗对盐碱胁迫的反应和适应性[J]. 东北师大学报(自然科学版), 1989, (4): 87-951. [32] 李晓宇, 蔺吉祥, 李秀军, 等. 羊草苗期对盐碱胁迫的生长适应及Na+、K+代谢响应[J]. 草业学报, 2013, 22(1): 201-209. [33] 张敏, 蔡瑞国, 李慧芝, 等. 盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J]. 生态学报, 2008, 28(1): 310-320. [34] 毛明艳, 方正. NaHCO3 胁迫对燕麦幼苗生长及相关生理指标的影响[J]. 安徽农业科学, 2009, 37(10): 4468-4470. [35] 王波, 宋凤斌. 燕麦对盐碱胁迫的反应和适应性[J]. 生态环境, 2006, 15(3): 625-629. [36] 张禄, 康利平. 干旱胁迫对豇豆幼苗叶片及根显微结构的影响[J]. 中国蔬菜, 2012, (10): 66-74. [37] 柳永强, 马廷蕊, 王方, 等. 马铃薯对盐碱土壤的反应和适应性研究[J]. 土壤通报, 2011, 42(6): 1388-1392. [38] 李波, 赵洪波, 杨蔚然, 等. NaHCO3 胁迫对苜蓿苗期适应性的影响[J]. 种子, 2010, 29(2): 22-25. [39] 王学文, 蔺彩虹, 李小峰, 等. NaHCO3 胁迫对大叶紫花苜蓿生理特征的影响[J]. 草业科学, 2007, 24(2): 26-29. [40] 杨青川, 孙彦, 苏加楷, 等. 紫花苜蓿耐盐育种及耐盐遗传基础的研究进展[J]. 草地学报, 2005, (9): 253-255. [41] 晏石娟, 马晖玲, 曹致中. 紫花苜蓿抗旱耐盐碱转基因抗性苗耐盐性研究[J]. 甘肃农业大学学报, 2006, 41(5): 91-94. [42] Serrato Valenti G, Ferro M, Ferraro D, et al. Anatomical changes in Prosopis tamarugo Phil. Seeding growing at different level of NaCl salinity[J]. Annals of Botany (London), 1991, 68: 47-53. [43] Shannon M C, Grieve C M, Francois L E. Whole plant response to salinity[A]. In: Wilkinson R E. Plant Environment Interactions[M]. New York: Marcel Dekker. Inc., 1994: 199-224. [44] 柯玉琴, 潘延国. NaCl胁迫下对甘薯叶片叶绿素超微结构及一些酶活性的影响[J]. 植物生理学报, 1999, 25(4): 229-233. [45] Aparajita Das-Chatterjee, Lily Goswami, Susmita Maitra, et al. Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms[J]. FEBS Letters, 2006, 580: 3980-3988. [46] 景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J]. 草业学报, 2011, 20(2): 134-139. [47] 刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较[J]. 草业学报, 2013, 22(2): 250-256. [48] 张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展[J]. 草业学报, 2012, 21(6): 296-305. [49] 姜健, 杨宝灵, 夏彤, 于淑梅, 等. 紫花苜蓿耐盐种质资源的遗传多样性分析[J]. 草业学报, 2011, 20(5): 119-125. [50] 李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应[J]. 草业学报, 2010, 19(4): 79-86. [51] 周仪, 王慧, 张述祖. 植物学(上册)[M]. 北京: 北京师范大学出版社, 1988: 93. [52] 王春裕. 论盐渍土种稻生态改良[J]. 土壤通报, 2002, 33(2): 84-95. [53] Castro-Diez P, Puyravaud J P, Cornelissen J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J]. Oecologia, 2000, 124(4): 476-486. [54] 伊稍K. 种子植物解剖学(第二版)[M]. 李正理, 译. 上海: 上海科学技术出版社, 1982: 1-4. [55] 王耀芝, 王勋陵, 李尉. 荒漠化草原常见植物叶内部结构的观察[J]. 兰州大学学报, 1983, 19(3): 87-96. [56] 刘家琼. 我国荒漠不同生态类型植物的旱生结构[J]. 植物生态学与地形学期刊, 1982, 6(4): 314-319. [57] 孙启忠, 王育青, 阎志坚, 等. 内蒙古荒漠区几种优势植物对干旱的适应性[J]. 牧草与饲料, 1991, (3): 12-14. [58] 郑文菊, 徐兰义, 王勋陵. 盐分对植物结构的影响[J]. 草业学报, 1993, 2(1): 78-80. [59] 赵蔓蓉, 贾恢先. 几种典型盐地植物超微结构的研究[J]. 干旱区资源与环境, 1993, 7(3): 334-337. [60] 贾恢先, 赵蔓蓉. 甘肃河西走廊几种典型盐地植物的解剖学研究[J]. 甘肃农业大学学报, 1983, (4): 64-67. [61] 朱宇旌, 张勇, 胡自治, 等. 小花碱茅叶适应盐胁迫的显微结构研究[J]. 中国草地, 2001, 32(3): 19-22. [62] 龚明, 丁念诚, 贺子义, 等. 盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J]. 植物学报, 1989, 31(11): 841-846. [63] 李瑞梅, 周广奇, 符少萍, 等. 盐胁迫下海马齿叶片结构变化[J]. 西北植物学报, 2010, 30(2): 0287-0292. [64] 朱宇旌, 张勇, 胡自治, 等. 小花碱茅茎适应盐胁迫的显微结构研究[J]. 中国草地, 2000, (5): 6-9. |
[1] | ZHANG Qian-bing,Anwar Ahmat,YU Lei,LU Wei-hua,CHANG Qing. Effects of different irrigation methods and quantities on soil salt transfer in oasis alfalfa fields [J]. Acta Prataculturae Sinica, 2014, 23(6): 69-77. |
[2] | WANG Shao-fei,LUO Yong-cong,ZHANG Xin-quan,HUANG Lin-kai,MA Xiao,LIU Lian. The production performance of 14 annual ryegrass varieties in the southwest of Sichuan Province [J]. Acta Prataculturae Sinica, 2014, 23(6): 87-94. |
[3] | WANG Yong,YUAN Xian-jun,GUO Gang,WEN Ai-you,WANG Jian,XIAO Shen-hua,YU Cheng-qun,BA Sang,SHAO Tao. Fermentation and aerobic stability of mixed ration forages in Tibet [J]. Acta Prataculturae Sinica, 2014, 23(6): 95-102. |
[4] | WANG Hong-ze,WANG Zhi-sheng,KANG Kun,ZOU Hua-wei,SHEN Jun-hua,HU Rui. Effects of corn flour and lactic acid bacteria on quality of mixed silage made from sweet potato vines, distiller’s grains and rice straw [J]. Acta Prataculturae Sinica, 2014, 23(6): 103-110. |
[5] | QIN Fang-cuo,ZHAO Gui-qin,JIAO Ting,HAN Yong-jie,HOU Jian-jie,SONG Xu-dong. Effects of different moisture contents and additives on the quality of baled oat silage [J]. Acta Prataculturae Sinica, 2014, 23(6): 119-125. |
[6] | QIU Xiao-yan,YUAN Xian-jun,GUO Gang,WEN Ai-you,YU Cheng-qun,BA Sang,SHAO Tao. Effects of molasses and acetic acid on fermentation and aerobic stability of total mixed ration silage in Tibet [J]. Acta Prataculturae Sinica, 2014, 23(6): 111-118. |
[7] | SHI Chuan-qi,LIU Mei,WANG Chen,ZHANG Xin-xin,CHENG Xin-yu. Taxonomic values for leaf structure in the tribe Vicieae (Leguminosae) in northeastern China [J]. Acta Prataculturae Sinica, 2014, 23(6): 157-166. |
[8] | HAN Bao-he,ZHU Hong. Effects of cadmium stress on accumulation ability, microstructure and physiological property in leaves of Trifolium repens [J]. Acta Prataculturae Sinica, 2014, 23(6): 167-175. |
[9] | LIU Hui-jie,LI Sheng,MA Shao-ying,ZHANG Pin-nan,SHI Zhen-zhen,YANG Xiao-ming. Responses of primary root and antioxidase system to exogenous Ca2+ in pea under H2O2 stress [J]. Acta Prataculturae Sinica, 2014, 23(6): 189-197. |
[10] | ZHANG Jun,SONG Li-li,GUO Dong-lin,GUO Chang-hong,SHU Yong-jun. Genome-wide identification and investigation of the MADS-box gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2014, 23(6): 233-241. |
[11] | KANG Jun-mei,ZHANG Tie-jun,WANG Meng-ying,ZHANG Yi,YANG Qing-chuan. Research progress in the quantitative trait loci (QTL) and genomic selection of alfalfa [J]. Acta Prataculturae Sinica, 2014, 23(6): 304-312. |
[12] | LI Jun-lin,ZHANG Xin-quan,YU Zhu,GUO Xu-sheng,MENG Xiang-kun,LUO Yan,YAN Yan-hong. Effects of moisture content and lactic acid bacteria additive on the quality of Italian ryegrass silage [J]. Acta Prataculturae Sinica, 2014, 23(6): 342-348. |
[13] | QI Jing-hua,ZHANG Feng,WANG Ying,SUN Guo-jun. Nitrogen dynamics under plastic mulching on the Loess Plateau [J]. Acta Prataculturae Sinica, 2014, 23(5): 13-23. |
[14] | SUN Hong,YU Ying-wen,MA Xiang-li,MU Xiao-ming,LIAO Jia-fa. A comprehensive evaluation of nutritional value of nine shrubs in the karst area of northwest Guizhou [J]. Acta Prataculturae Sinica, 2014, 23(5): 99-106. |
[15] | PAN Ming-hong,LING Yao,JING Wen,MA Hong-ping,PENG Yan. Genetic diversity and phylogeny of rhizobia isolated from white clover in Sichuan Province [J]. Acta Prataculturae Sinica, 2014, 23(5): 143-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||