Reference:[1] Gozho G N, Plaizier J C, Krause D O, et al. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response[J]. Journal of Dairy Science, 2005, 88: 1399-1403.[2] Dong G, Liu S, Wu Y, et al. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: impacts on immunity and metabolism[J]. Acta Veterinaria Scandinavica, 2011, 53: 48.[3] Rustomo B, AlZahal O, Odongo N E, et al. Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow[J]. Journal of Dairy Science, 2006, 89: 4758-4768.[4] Plaizier J C, Krause D O, Gozho G N, et al. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences[J]. Veterinary Journal, 2008, 176: 21-31.[5] Fairfield A M, Plaizier J C, Duffield T F, et al. Effects of prepartum administration of a monensin controlled release capsule on rumen pH, feed intake, and milk production of transition dairy cows[J]. Journal of Dairy Science, 2007, 90: 937-945.[6] Wang J P, Wang J Q, Bu D P. Effect of supplemental saturated fatty acids on blood CO2, ions concentration and cation-anion balance of mid-lactating dairy cows during heat stress[J]. Acta Prataculturae Sinica, 2013, 22(3): 314-320.[7] Keunen J E, Plaizier J C, Kyriazakis L, et al. Effects of a subacute ruminal acidosis model on the diet selection of dairy cows[J]. Journal of Dairy Science, 2002, 85: 3304-3313.[8] Enemark J M, Jorgensen R J, Kristensen N B. An evaluation of parameters for the detection of subclinical rumen acidosis in dairy herds[J]. Veterinary Research Communications, 2004, 28: 687-709.[9] Ametaj B N, Emmanuel D G, Zebeli Q, et al. Feeding high proportions of barley grain in a total mixed ration perturbs diurnal patterns of plasma metabolites in lactating dairy cows[J]. Journal of Dairy Science, 2009, 92: 1084-1091.[10] Guo Y, Xu X, Zou Y, et al. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp[J]. Journal of Animal Science and Biotechnology, 2013, 4: 31-41.[11] Kleen J L, Hooijer G A, Rehage J, et al. Subacute ruminal acidosis (SARA): a review[J]. Journal of Veterinary Medicine Series A-Physiology Pathology Clinical Medicine, 2003, 50: 406-414.[12] Beauchemin K A, Yang W Z, Rode L M. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production[J]. Journal of Dairy Science, 2003, 86: 630-643.[13] Xue N N, Wang X J, Wang L L. Liver GPCRs and regulations of glucose metabolism[J]. Chinese Pharmacological Bulletin, 2011, 27(1): 4-10.[14] Aschenbach J R, Kristensen N B, Donkin S S, et al. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough[J]. IUBMB Life, 2010, 62: 869-877.[15] Wood I S, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins[J]. British Journal of Nutrition, 2003, 89: 3-9.[16] Auwerx J, Menzies K J. An acetylation rheostat for the control of muscle energy homeostasis[J]. Journal of Molecular Endocrinology, 2013, 51(3): 101-114.[17] Rayner D V, Thomas M E, Trayhurn P. Glucose transpor-ters (GLUTs 14) and their mRNAs in regions of the rat brain:insulin sensitive transporter expression in the cerebellum[J]. Canadian Journal of Physiology and Pharmacology, 1994, 72: 476-479.[18] Shepherd P R, Kahn B B. Glucose transporters and insulin action-implications for insulin resistance and diabetes melli-tus[J]. New England Journal of Medicine, 1999, 341: 248-257.[19] Wang C, Liu Q, Zhang Y L, et al. Effects of glycerol on energy balance and concentration of glucose in the liver during the peripartum period in dairy cows[J]. Acta Prataculturae Sinica, 2013, 22(1): 252-259.[20] Jia Y Y, Wang S Q, Chang G J, et al. Effects of SARA induced by high level concentrate on cortisol concentrations in serum and rumen fluids of the goats during lactation[J]. Acta Prataculturae Sinica, 2012, 21(4): 259-266.[21] Nocek J E. Bovine acidosis: implications on laminitis[J]. Journal of Dairy Science, 1997, 80: 1005-1028.[22] Garrett E F, Pereira M N, Nordlund K V, et al. Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows[J]. Journal of Dairy Science, 1999, 82: 1170-1178.[23] Oba M, Allen M S. Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 3. Digestibility and microbial efficiency[J]. Journal of Dairy Science, 2000, 83: 1350-1358.[24] Yang W Z, Beauchemin K A. Effects of physically effective fiber on chewing activity and ruminal pH of dairy cows fed diets based on barley silage[J]. Journal of Dairy Science, 2006, 89: 217-228.[25] Steele M A, Croom J, Kahler M, et al. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis[J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2011, 300: 1515-1523.[26] Li Y, Hao Z L, Li F D, et al. Effect of different combinations of diet on rumen metabolic parameters of sheep[J]. Acta Prataculturae Sinica, 2011, 20(6): 264-269.[27] Wang J D, Liu Z P. Veterinary Clinical Diagnostics[M]. Beijing: China Agriculture Press, 2004: 237-239.[28] Zuo Z C, Deng J L, Wang Z, et al. Effect of energy intake levels on serum total bilirubin, protein and aminopherase of periparturient dairy cows[J]. Chinese Journal of Veterinary Science, 2007, 27(6): 865-869.[29] Ye P S, Jiang X Y, Zhang S K, et al. Effect of a high-concentrate diet on the distribution and redistribution of amino acids in liver and on milk protein of lactating goats[J]. Acta Prataculturae Sinica, 2013, 22(6): 182-189.[30] Staples C R, Thatcher W W, Clark J H. Relationship between ovarian activity and energy status during the early postpartum period of high producing dairy cows[J]. Journal of Dairy Science, 1990, 73: 938-947.[31] Carlson M R, Zhang B, Fang Z, et al. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks[J]. BMC Genomics, 2006, 7: 40.[32] Dong H B, Wang S Q, Jia Y Y, et al. Change of subacute ruminal acidosis in goats hypothalamic appetite regulation factor mRNA expression [J]. Jiangsu Agricultural Sciences, 2013, 41(1): 23-25.[33] Bergman E N, Brockman R P, Kaufman C F. Glucose metabolism in ruminants: comparison of whole-body turnover with production by gut, liver, and kidneys[J]. Federation Proceedings, 1974, 33: 1849-1854.[34] Brockman R P. Role of insulin in regulating hepatic gluconeogenesis in sheep[J]. Canadian Journal of Physiology and Pharmacology, 1985, 63: 1460-1464.[35] Nijland M J, Mitsuya K, Li C, et al. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability[J]. The Journal of Physiology, 2010, 588: 1349-1359.[36] Modaressi S, Brechtel K, Christ B, et al. Human mitochondrial phosphoenolpyruvate carboxykinase 2 gene. Structure, chromosomal localization and tissue-specific expression[J]. Biochemical Journal, 1998, 333(2): 359-366. 参考文献:[1] Gozho G N, Plaizier J C, Krause D O, et al. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response[J]. Journal of Dairy Science, 2005, 88: 1399-1403.[2] Dong G, Liu S, Wu Y, et al. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: impacts on immunity and metabolism[J]. Acta Veterinaria Scandinavica, 2011, 53: 48.[3] Rustomo B, AlZahal O, Odongo N E, et al. Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow[J]. Journal of Dairy Science, 2006, 89: 4758-4768.[4] Plaizier J C, Krause D O, Gozho G N, et al. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences[J]. Veterinary Journal, 2008, 176: 21-31.[5] Fairfield A M, Plaizier J C, Duffield T F, et al. Effects of prepartum administration of a monensin controlled release capsule on rumen pH, feed intake, and milk production of transition dairy cows[J]. Journal of Dairy Science, 2007, 90: 937-945.[6] 王建平,王加启,卜登攀. 饱和脂肪酸对泌乳中期热应激奶牛血液 CO2、离子浓度和离子平衡的影响[J]. 草业学报, 2013, 22(3): 314-320.[7] Keunen J E, Plaizier J C, Kyriazakis L, et al. Effects of a subacute ruminal acidosis model on the diet selection of dairy cows[J]. Journal of Dairy Science, 2002, 85: 3304-3313.[8] Enemark J M, Jorgensen R J, Kristensen N B. An evaluation of parameters for the detection of subclinical rumen acidosis in dairy herds[J]. Veterinary Research Communications, 2004, 28: 687-709.[9] Ametaj B N, Emmanuel D G, Zebeli Q, et al. Feeding high proportions of barley grain in a total mixed ration perturbs diurnal patterns of plasma metabolites in lactating dairy cows[J]. Journal of Dairy Science, 2009, 92: 1084-1091.[10] Guo Y, Xu X, Zou Y, et al. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp[J]. Journal of Animal Science and Biotechnology, 2013, 4: 31-41.[11] Kleen J L, Hooijer G A, Rehage J, et al. Subacute ruminal acidosis (SARA): a review[J]. Journal of Veterinary Medicine Series A-Physiology Pathology Clinical Medicine, 2003, 50: 406-414.[12] Beauchemin K A, Yang W Z, Rode L M. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production[J]. Journal of Dairy Science, 2003, 86: 630-643.[13] 薛妮娜, 王晓娟, 王莉莉. 肝脏G蛋白偶联受体与糖代谢调节[J]. 中国药理学通报, 2011, 27(1): 4-10.[14] Aschenbach J R, Kristensen N B, Donkin S S, et al. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough[J]. IUBMB Life, 2010, 62: 869-877.[15] Wood I S, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins[J]. British Journal of Nutrition, 2003, 89: 3-9.[16] Auwerx J, Menzies K J. An acetylation rheostat for the control of muscle energy homeostasis[J]. Journal of Molecular Endocrinology, 2013, 51(3): 101-114.[17] Rayner D V, Thomas M E, Trayhurn P. Glucose transpor-ters (GLUTs 1-4) and their mRNAs in regions of the rat brain:insulin-sensitive transporter expression in the cerebellum[J]. Canadian Journal of Physiology and Pharmacology, 1994, 72: 476-479.[18] Shepherd P R, Kahn B B. Glucose transporters and insulin action-implications for insulin resistance and diabetes melli-tus[J]. New England Journal of Medicine, 1999, 341: 248-257.[19] 王聪, 刘强, 张延利, 等. 甘油对围产期奶牛能量平衡和肝脏糖原合成的影响[J]. 草业学报, 2013, 22(1): 252-259.[20] 贾媛媛, 王绍庆, 常广军, 等. 高精料日粮诱导的SARA对泌乳期山羊血液及瘤胃液中皮质醇的影响[J]. 草业学报, 2012, 21(4): 259-266.[21] Nocek J E. Bovine acidosis: implications on laminitis[J]. Journal of Dairy Science, 1997, 80: 1005-1028.[22] Garrett E F, Pereira M N, Nordlund K V, et al. Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows[J]. Journal of Dairy Science, 1999, 82: 1170-1178.[23] Oba M, Allen M S. Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 3. Digestibility and microbial efficiency[J]. Journal of Dairy Science, 2000, 83: 1350-1358.[24] Yang W Z, Beauchemin K A. Effects of physically effective fiber on chewing activity and ruminal pH of dairy cows fed diets based on barley silage[J]. Journal of Dairy Science, 2006, 89: 217-228.[25] Steele M A, Croom J, Kahler M, et al. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis[J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2011, 300: 1515-1523.[26] 李勇, 郝正理, 李发弟, 等. 不同组合饲粮对绵羊瘤胃代谢参数的影响[J]. 草业学报, 2011, 20(6): 264-269.[27] 王俊东, 刘宗平. 兽医临床诊断学[M]. 北京: 中国农业出版社, 2004: 237-239.[28] 左之才, 邓俊良, 王哲, 等. 不同能量摄入水平对围产期健康奶牛血清总胆红素、蛋白及转氨酶的影响[J]. 中国兽医学报, 2007, 27(6): 865-869.[29] 叶平生, 姜雪元, 张树坤, 等. 高精料对泌乳期山羊肝脏氨基酸分配与重分配及乳蛋白的影响[J]. 草业学报, 2013, 22(6): 182-189.[30] Staples C R, Thatcher W W, Clark J H. Relationship between ovarian activity and energy status during the early postpartum period of high producing dairy cows[J]. Journal of Dairy Science, 1990, 73: 938-947.[31] Carlson M R, Zhang B, Fang Z, et al. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks[J]. BMC Genomics, 2006, 7: 40.[32] 董海波, 王绍庆, 贾媛媛, 等. 亚急性瘤胃酸中毒时山羊下丘脑食欲调节因子 mRNA 的表达变化[J]. 江苏农业科学, 2013, 41(1): 23-25.[33] Bergman E N, Brockman R P, Kaufman C F. Glucose metabolism in ruminants: comparison of whole-body turnover with production by gut, liver, and kidneys[J]. Federation Proceedings, 1974, 33: 1849-1854.[34] Brockman R P. Role of insulin in regulating hepatic gluconeogenesis in sheep[J]. Canadian Journal of Physiology and Pharmacology, 1985, 63: 1460-1464.[35] Nijland M J, Mitsuya K, Li C, et al. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability[J]. The Journal of Physiology, 2010, 588: 1349-1359.[36] Modaressi S, Brechtel K, Christ B, et al. Human mitochondrial phosphoenolpyruvate carboxykinase 2 gene. Structure, chromosomal localization and tissue-specific expression[J]. Biochemical Journal, 1998, 333(2): 359-366. |