Acta Prataculturae Sinica ›› 2012, Vol. 21 ›› Issue (5): 302-310.
Previous Articles Next Articles
CHEN Jing-bo1,2, LIU Jian-xiu1
Received:
2011-10-24
Online:
2012-05-25
Published:
2012-10-20
CLC Number:
CHEN Jing-bo, LIU Jian-xiu. Salinity tolerance evaluation and mechanisms in bermudagrass (Cynodon spp.)[J]. Acta Prataculturae Sinica, 2012, 21(5): 302-310.
[1] 齐晓芳, 张新全, 凌瑶, 等. 我国狗牙根种质资源研究进展[J]. 草业科学, 2011, 28(3): 444-448. [2] 刘伟, 张新全, Wu Y Q, 等. 狗牙根属植物多样性与品种选育研究概况[J]. 园艺学报, 2003, 30(5): 623-628. [3] 赵祥, 谢开云, 王妍君, 等. 晋北盐碱化草地群落斑块的多样性[J]. 草业学报, 2011, 20(4): 51-60. [4] 杜利霞, 董宽虎, 杨桂英, 等. 不同盐碱化草地对披碱草光合生理特性的影响[J]. 草业学报, 2011, 20(5): 49-56. [5] 马江涛, 王宗礼, 黄东光, 等. 基因工程在牧草培育中的应用[J]. 草业学报, 2010, 19(6): 248-262. [6] 王舟, 刘建秀. DREB/CBF类转录因子研究进展及其在草坪草和牧草抗逆基因工程中的应用[J]. 草业学报, 2011, 20(1): 222-236. [7] Gausman H W, Cowley W R, Barton S H. Reaction of some grasses to artificial salinization[J]. Agronomy Journal, 1954, 46: 412-414. [8] Marcum K B, Pessarakli M. Salinity tolerance and salt gland excretion efficiency of bermudagrass turf cultivars[J]. Crop Science, 2006, 46: 2571-2574. [9] 陈静波, 阎君, 张婷婷, 等. 四种暖季型草坪草对长期盐胁迫的生长反应[J]. 草业学报, 2008, 17(5): 30-36. [10] 程云辉, 周卫星, 王永霞, 等. 沿海滩涂盐渍化地上几种耐盐牧草的筛选试验[J]. 江苏农业科学, 2003, (3): 61-63. [11] 宗俊勤, 陈静波, 於朝广, 等. 部分暖季型草坪草品种(系)在沿海滩涂的生长适用性及其对土壤盐度的影响[J]. 植物资源与环境学报, 2010, 19(3): 48-54. [12] Lee G, Carrow R N, Duncan R R. Criteria for assessing salinity tolerance of the halophytic turfgrass seashore paspalum[J]. Crop Science, 2005, 45(1): 251-258. [13] Chen J, Yan J, Qian Y, et al. Growth responses and ion regulation of four warm season turfgrasses to long-term salinity stress[J]. Scientia Horticulturae, 2009, 122(4): 620-625. [14] Dudeck A E, Singh S, Giordano C E, et al. Effects of sodium chloride on Cynodon turfgrasses[J]. Agronomy Journal, 1983, 75: 927-930. [15] Adavi Z, Razmjoo K, Mobli M. Salinity tolerance of bermudagrass (Cynodon spp. L. C. Rich) cultivars and shoot Na, K and Cl contents under a high saline environment[J]. Journal of Horticultural Science & Biotechnology, 2006, 81(6): 1074-1078. [16] 陈静波, 阎君, 姜燕琴, 等. 暖季型草坪草优良选系和品种抗盐性的初步评价[J]. 草业学报, 2009, 18(5): 107-114. [17] 陈静波, 张婷婷, 阎君, 等. 短期和长期盐胁迫对暖季型草坪草新选系生长的影响[J]. 草业科学, 2008, 25(7): 109-113. [18] Youngner V B, Lunt O R. Salinity effects on roots and tops of Bermuda grass[J]. Journal of the British Grassland Society, 1967, 22: 257-259. [19] Bauer B K, Poulter R E, Troughton A D, et al. Salinity tolerance of twelve hybrid bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davy] genotypes[J]. International Turfgrass Society Research Journal, 2009, 11: 313-326. [20] 王红玲, 阿不来提·阿不都热依木, 齐曼. Na2SO4胁迫下狗牙根K+、Na+离子分布及其抗盐性的评价[J]. 中国草地, 2004, 26(5): 37-42. [21] Francois L E. Salinity effects on three turf bermudagrasses[J]. HortScience, 1988, 23: 706-708. [22] Ramakrishnan P S, Nagpal R. Adaptation to excess salts in an alkaline soil population of Cynodon dactylon (L.) Pers.[J]. Journal of Ecology, 1973, 61: 369-381. [23] Hameed M, Ashraf M. Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress[J]. Flora, 2008, 203: 683-694. [24] Akram N, Shahbaz M, Athar H, et al. Morpho-physiological responses of two differently adapted populations of Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L. to salt stress[J]. Pakistan Journal of Botany, 2006, 38(5): 1581-1588. [25] 周霞, 黄春琼, 张绪元, 等. 狗牙根耐盐性材料初步筛选[J]. 热带农业科学, 2010, 30(4): 20-24. [26] Lu S, Peng X, Guo Z, et al. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis×C. dactylon) and their physiological responses to salt and drought stress[J]. Plant Cell Reporters, 2007, 26(8): 1413-1420. [27] Marcum K B, Murdoch C L. Growth responses, ion relations, and osmotic adaptations of eleven C4 turfgrasses to salinity[J]. Agronomy Journal, 1990, 82: 892-896. [28] Marcum K B. Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae[J]. Crop science, 1999, 39: 1153-1160. [29] Lee G, Duncan R R, Carrow R N. Salinity tolerance of selected seashore paspalums and bermudagrasses: Root and verdure responses and criteria[J]. HortScience, 2004, 39: 1143-1147. [30] Marcum K B, Pessarakli M, Kopec D M. Relative salinity tolerance of 21 turf-type desert saltgrasses compared to bermudagrass[J]. Hortscience, 2005, 40(3): 827-829. [31] Pessarakli M, Touchane H. Growth responses of bermudagrass and seashore paspalum under various levels of sodium chloride stress[J]. Journal of Food Agriculture and Environment, 2006, 4(3&4): 240-243. [32] 陈静波, 阎君, 姜燕琴, 等. NaC1胁迫对6种暖季型草坪草新选系生长的影响[J]. 植物资源与环境学报, 2007, 16(4): 47-52. [33] 刘一明,程凤枝,王齐, 等. 四种暖季型草坪植物的盐胁迫反应及其耐盐阈值[J]. 草业学报, 2009, 18(3): 192-199. [34] Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plants[J]. Plant and Soil, 2010, 326: 45-60. [35] Zhu J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6: 66-71. [36] 景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J]. 草业学报, 2011, 20(2): 134-139. [37] 王龙强, 米永伟, 蔺海明. 盐胁迫对枸杞属两种植物幼苗离子吸收和分配的影响[J]. 草业学报, 2011, 20(4): 129-136. [38] Hameed M, Ashraf M, Naz N. Anatomical and physiological characteristics relating to ionic relations in some salt tolerant grasses from the Salt Range, Pakistan[J]. Acta Physiologiae Plantarum, 2011, 33: 1399-1409. [39] Peng Y, Zhu Y, Mao Y, et al. Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+[J]. Journal of Experimental Botany, 2004, 55: 939-949. [40] Reinhardt D H, Rost T L. Salinity accelerates endodermal development and induces an exodermis in cotton seedlings in cotton seedling roots[J]. Environmental and Experimental Botany, 1995, 35: 563-574. [41] Maathuis F J M, Amtmann A. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios[J]. Annals of Botany, 1999, 84: 123-133. [42] Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants[J]. Annals of Botany, 2003, 91: 503-527. [43] Blumwald E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12: 431-434. [44] Bradley P M, Morris J T. Relative importance of ion exclusion, secretion, and accumulation in Spartina alterniflora Loisel[J]. Journal of Experimental Botany, 1991, 42: 1525-1532. [45] Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proceedings of the National Academy of Sciences USA, 2000, 97: 6896-6901. [46] Shi H, Lee B H, Wu S J, et al. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nature Biotechnology, 2003, 21: 81-85. [47] Yang Q, Chen Z Z, Zhou X F, et al. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis[J]. Molecular Plant, 2009, 2: 22-31. [48] Robinson M F, Very A, Sanders D, et al. How can stomata contribute to salt tolerance?[J]. Annals of Botany, 1997, 80: 387-393. [49] Yeo A R, Kramer D, Lauchli A, et al. Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention of sodium[J]. Journal of Experimental Botany, 1977, 28: 17-29. [50] Matsushita N, Matoh T. Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants[J]. Physiologia Plantarum, 1991, 83: 170-176. [51] Blom-Zandstra M, Vogelzang S A, Veen B W. Sodium fluxes in sweet pepper exposed to varying sodium concentrations[J]. Journal of Experimental Botany, 1998, 49: 1863-1868. [52] Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1141-1146. [53] Takahashi R, Nishio T, Ichizen N, et al. Salt-tolerant reed plants contain lower Na+ and higher K+ than salt-sensitive reed plants[J]. Acta Physiologiae Plantarum, 2007, 29: 431-438. [54] Bhatti S, Steinert S, Sarwar G, et al. Ion distribution in relation to leaf age in Leptochloa fusca (L.) Kunth (Kallar Grass). I. K, Na, Ca and Mg[J]. New Phytologist, 1993, 123: 539-545. [55] Hasegawa P M, Bressan R A, Handa A K. Cellular mechanisms of salinity tolerance[J]. HortScience, 1986, 21(6): 1317-1324. [56] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. [57] Zhang G, Su Q, An L, et al. Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis[J]. Plant Physiology and Biochemistry, 2008, 46(2): 117-126. [58] Hameed M, Ashraf M, Naz N, et al. Anatomical adaptations of Cynodon dactylon (L.) Pers., from the salt range Pakistan, to salinity stress. I. root and stem anatomy[J]. Pakistan Journal of Botany, 2010, 42(1): 279-289. [59] Liphshchitz N, Waisel Y. Existence of salt glands in various genera of the Gramineae[J]. New Phytologist, 1974, 73: 507-513. [60] Oross J W, Thomson W W. The ultrastructure of the salt glands of Cynodon and Distichlis (Poaceae)[J]. American Journal of Botany, 1982, 69(6): 939-949. [61] Oross J W, Thomson W W. The ultrastructure of Cynodon salt glands: The apoplast[J]. European Journal of Cell Biology, 1982, 28(2): 257-263. [62] Oross J W, Thomson W W. The ultrastructure of Cynodon salt glands: secreting and nonsecreting[J]. European Journal of Cell Biology, 1984, 34: 287-291. [63] Oross J W, Leonard R T, Thomson W W. Flux rate and a secretion model for salt glands of grasses[J]. Israel Journal of Botany, 1985, 34: 69-77. [64] Worku W, Chapman G P. The salt secretion physiology of chloridoid grass, Cynodon dactylon (L.) Pers., and its implications[J]. SINET: Ethiopian Journal of Science, 1998, 21(1): 1-16. [65] Marcum K B, Murdoch C L. Salinity tolerance mechanisms of six C4 turfgrasses[J]. Journal of the American Society for Horticultural Science, 1994, 119: 779-784. [66] Amarasinghe V, Watson L. Variation in salt secretory activity of microhairs in grasses[J]. Australian Journal of Plant Physiology, 1989, 16(2):219-229. [67] Pollak G, Waisel Y. Ecophysiology of salt excretion in Aeluropus litoralis (Graminae)[J]. Physiologia Plantarum, 1979, 47(3): 177-184. [68] 刘志华, 赵可夫. 盐胁迫对獐茅生长及Na+和K+含量的影响[J]. 植物生理与分子生物学报, 2005, 31(3): 311-316. [69] Marcum K B, Anderson S J, Engelke M C. Salt gland ion secretion: A salinity tolerance mechanism among five Zoysiagrass species[J]. Crop Science, 1998, 38: 806-810. [70] Liphschitz N, Ilan A, Eshel A, et al. Salt glands on leaves of rhodes grass (Chloris gayana Kth.)[J]. Annals of Botany, 1974, 38: 459-462. [71] 蔡建一, 马清, 周向睿, 等. Na+在霸王适应渗透胁迫中的生理作用[J]. 草业学报, 2011, 20(1): 89-95. [72] Marcum K B, Yensen N P, Leake J E. Genotypic variation in salinity tolerance of Distichlis spicata turf ecotypes[J]. Australian Journal of Experimental Agriculture, 2007, 47: 1506-1511. [73] Lee G, Duncan R R, Carrow R N. Nutrient uptake responses and inorganic ion contribution to solute potential under salinity stress in halophytic seashore paspalum[J]. Crop Science, 2007, 47: 2504-2512. [74] Yeo A R. Salinity resistance: physiologies and prices[J]. Physiologia Plantarum, 1983, 58: 214-222. [75] Huang B, Duncan R R, Carrow R N. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying[J]. Crop Science, 1997, 37: 1863-1869. |
[1] | GUO Yu-pin,MI Fu-gui,YAN Li-jun,REN Yong-xia,LV Shi-jie,FU Bing-zhe. Physiological response to drought stresses and drought resistances evaluation of different Kentucky bluegrass varieties [J]. Acta Prataculturae Sinica, 2014, 23(4): 220-228. |
[2] | YANG Hai-xia,LIU Run-jin,GUO Shao-xia. Effects of arbuscular mycorrhizal fungus Glomus mosseae on the growth characteristics of Festuca arundinacea under salt stress conditions [J]. Acta Prataculturae Sinica, 2014, 23(4): 195-203. |
[3] | HAN Chao,LIU Yang,DONG Hui,CHANG Zhi-hui. Influences of biosolids on drought resistance of tall fescue [J]. Acta Prataculturae Sinica, 2014, 23(3): 127-135. |
[4] | ZHANG Huai-shan, ZHAO Gui-qi, LI Meng-fei, XIA Zeng-run, WANG Chun-mei. Physiological responses of Pennisetum longissimum var. intermedium seedlings to PEG, low temperature and salt stress treatments [J]. Acta Prataculturae Sinica, 2014, 23(2): 180-188. |
[5] | PENG Yan, LI Zhou. Effects of drought preconditioning on physiological responses to heat stress in two Kentucky bluegrasses [J]. Acta Prataculturae Sinica, 2013, 22(5): 229-238. |
[6] |
YU Le, LIU Yong-hai, ZHOU Li-ping, LIANG Guo-qiu.
A study on the changes of ascorbic acid and related physiological indexes in different cultivars of Zoysia under drought stress [J]. Acta Prataculturae Sinica, 2013, 22(4): 106-115. |
[7] | Drought tolerance analysis of Miscanthus sinensis ‘Gracillimu’ seedlingsCHEN Min, HOU Xin-cun, FAN Xi-feng, WU Ju-ying, PAN Yuan-zhi. Drought tolerance analysis of Miscanthus sinensis ‘Gracillimu’ seedlings [J]. Acta Prataculturae Sinica, 2013, 22(3): 184-. |
[8] | JIANG Qiao-feng, CHEN Jing-bo, ZONG Jun-qin, LI Shan, CHU Xiao-qing, GUO Hai-lin, LIU Jian-xiu . Effect of phosphorus on Na+ and K+ concentrations and the growth of Zoysia matrella under salt stress [J]. Acta Prataculturae Sinica, 2013, 22(3): 162-. |
[9] | LI Xiao-yu, LIN Ji-xiang, LI Xiu-jun, MU Chun-sheng. Growth adaptation and Na+ and K+ metabolism responses of Leymus chinensis seedlings under salt and alkali stresses [J]. Acta Prataculturae Sinica, 2013, 22(1): 201-209. |
[10] | LI Shan, CHEN Jing-bo, GUO Hai-lin, ZONG Jun-qin, ZHANG Fang, CHU Xiao-qing, JIANG Qiao-feng, DING Wan-wen, LIU Jian-xiu. Salinity tolerance evaluation of Zoysia turfgrass germplasm [J]. Acta Prataculturae Sinica, 2012, 21(4): 43-51. |
[11] | YUAN Xue-jun, WANG Zhi-yong, ZHENG Yi-qi, LIU Jian-xiu, SHE Jian-ming. Acquisition and identification of cold-resistant somatic mutants of centipedegrass [J]. Acta Prataculturae Sinica, 2011, 20(6): 237-244. |
[12] | WANG Dan, XUAN Ji-ping, GUO Hai-lin, LIU Jian-xiu. Seasonal changes of freezing tolerance and its relationship to the contents of carbohydrates, proline, and soluble protein of Zoysia [J]. Acta Prataculturae Sinica, 2011, 20(4): 98-107. |
[13] | DONG Qiu-li, XIA Fang-shan, DONG Kuan-hu. Effects of NaCl stress on proline metabolism of Achnatherum splendens seedling [J]. Acta Prataculturae Sinica, 2010, 19(5): 71-76. |
[14] | WANG Yan, LI Jian-long, JIANG Tao, DENG Lei. Effect of pre-treatments with SA、H2O2 and 6-BA on chilling tolerance in Zoysia matrella [J]. Acta Prataculturae Sinica, 2010, 19(2): 76-81. |
[15] | WANG Yan, LI Jian-long, YU Zui, XUE Feng. The signaling molecule H2O2 improved the heat-tolerance system of Festuca arundinaceaby up-regulating antioxidative activity [J]. Acta Prataculturae Sinica, 2010, 19(1): 89-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||