[1] Liu H, Yu C, Li H, et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Science, 2015, 231: 198-211. [2] Close T J.Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 1996, 97(4): 795-803. [3] Carpenter J F, Crowe J H.The mechanism of cryoprotection of proteins by solutes. Cryobiology, 1988, 25(3): 244-255. [4] Jensen A B, Goday A, Figueras M, et al. Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant Journal, 1998, 13(5): 691-697. [5] Hara M, Endo T, Kamiya K, et al. The role of hydrophobic amino acids of K-segments in the cryoprotection of lactate dehydrogenase by dehydrins. Journal of Plant Physiology, 2016, 210: 18-23. [6] Koag M C, Wilkens S, Fenton R D, et al. The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiology, 2009, 150(3): 1503-1514. [7] Qian G, Ping J J, Zhang Z, et al. Molecular cloning and protein structure prediction of barley (Hordeum vulgare L.) Dhn6 gene and its expression pattern under dehydration conditions. Hereditas, 2011, 33(3): 270-277. 钱刚, 平军娇, 张珍, 等. 大麦Dhn6基因的克隆、蛋白质结构预测与干旱胁迫表达模式. 遗传, 2011, 33(3): 270-277. [8] Halder T, Agarwal T, Ray S.Isolation, cloning, and characterization of a novel Sorghum dehydrin (SbDhn2) protein. Protoplasma, 2016, 253(6): 1475-1488. [9] Lee S C, Lee M Y, Kim S J, et al. Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Molecules and Cells, 2005, 19(2): 212-218. [10] Hernandez-Sanchez I E, Maruri-Lopez I, Ferrando A, et al. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif. Frontiers in Plant Science, 2015, 6: 702. [11] Yang W, Zhang L, Lü H, et al. The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress. Frontiers in Plant Science, 2015, 6: 406. [12] Drira M, Saibi W, Brini F, et al. The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and beta-glucosidase activities in vitro. Molecular Biotechnology 2013, 54(2): 643-650. [13] Liu H, Du Y, Li H, et al. Cloning, expression and functional analysis of WDHN1 gene from wheat (Triticum aestivum). Chinese Journal of Agricultural Biotechnology, 2016, 24(11): 1676-1687. 刘浩, 杜娅, 李核, 等. 小麦WDHN1基因的克隆、表达及功能分析. 农业生物技术学报, 2016, 24(11): 1676-1687. [14] Saibi W, Feki K, Ben Mahmoud R, et al. Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta, 2015, 242(5): 1187-1194. [15] Chen R G, Jing H, Guo W L, et al. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Reports, 2015, 34(12): 2189-2200. [16] Qiang Z Q, Liang Y J, Yu Z Y, et al. Cloning and functional analysis of wzy2-1 gene in wheat. Acta Agronomica Sinica, 2016, 42(8): 1253-1258. 强治全, 梁雅珺, 于正阳, 等. 小麦wzy2-1基因的克隆及功能分析. 作物学报, 2016, 42(8): 1253-1258. [17] Park S C, Kim Y H, Jeong J C, et al. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta, 2011, 233(3): 621-634. [18] Li Z, Peng Y, Ma X.Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiologiae Plantarum, 2013, 35(1): 213-222. [19] Jing H, Li C, Ma F, et al. Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PloS One, 2016, 11(8): e0161073. [20] Candat A, Paszkiewicz G, Neveu M, et al. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell, 2014, 26(7): 3148-3166. [21] Asghar R, Fenton R D, Demason D A, et al. Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma, 1994, 177(3/4): 87-94. [22] Wisniewski M, Webb R, Balsamo R, et al. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiologia Plantarum, 1999, 105(4): 600-608. [23] Atkinson J, Clarke M W, Warnica J M, et al. Structure of an intrinsically disordered stress protein alone and bound to a membrane surface. Biophysical Journal, 2016, 111(3): 480-491. [24] Zong H, Liu E E, Guo Z F, et al. Effects of LaCl3 and CPZ on proline accumulation of rice seedling under drought and salt stresses. Acta Agronomica Sinica, 2001, 27(2): 173-177. 宗会, 刘娥娥, 郭振飞, 等. 干旱、盐胁迫下LaCl3和CPZ对稻苗脯氨酸积累的影响. 作物学报, 2001, 27(2): 173-177. [25] Ajigboye O O, Lu C, Murchie E H, et al. Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. Pesticide Biochemistry and Physiology, 2017, 137: 49-61. |