[1] McDaniel M D, Grandy A S, Tiemann L K, et al. Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biology & Biochemistry, 2014, 78: 243-254. [2] Wang J S, Fan F F, Guo J, et al. Effects of different crop rotations on growth of continuous cropping sorghum and its rhizosphere soil micro-environment. Chinese Journal of Applied Ecology, 2016, 27(7): 2283-2291. 王劲松, 樊芳芳, 郭珺, 等. 不同作物轮作对连作高粱生长及其根际土壤环境的影响. 应用生态学报, 2016, 27(7): 2283-2291. [3] Wang Z Q, Huang G Q, Zhao Q G.Brief analysis on connotation, significance and implementing essentials of rotation fallow under new normal in China. Soils, 2017, 49(4): 651-657. 王志强, 黄国勤, 赵其国. 新常态下我国轮作休耕的内涵、意义及实施要点简析. 土壤, 2017, 49(4): 651-657. [4] Ye Y L, Xiao Y B, Huang Y F, et al. Effects of wheat/maize and faba bean/maize intercropping on water use. Chinese Agricultural Science Bulletin, 2008, 24(3): 445-449. 叶优良, 肖焱波, 黄玉芳, 等. 小麦/玉米和蚕豆/玉米间作对水分利用的影响. 中国农学通报, 2008, 24(3): 445-449. [5] Gao Y L, Sun Z X, Bai W, et al. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Scientia Agricultura Sinica, 2017, 50(19): 3702-3713. 高砚亮, 孙占祥, 白伟, 等. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017, 50(19): 3702-3713. [6] Xue Q X.Effects of crop stubbles on alleviating the damages by continuous cropping soybean. Soybean Science, 2010, 29(1): 68-71. 薛庆喜. 作物茬口对缓解大豆连作危害效果的研究.大豆科学, 2010, 29(1): 68-71. [7] Zhang F T, Qiao Y F, Miao S J, et al. Effects of crop rotation on spectrum characteristics of organic matter in mollisol aggregates. Journal of Soil Water Conservation, 2015, 29(6): 208-214. 张福韬, 乔云发, 苗淑杰, 等. 轮作对黑土团聚体有机质光谱特征的影响. 水土保持学报, 2015, 29(6): 208-214. [8] Barton L, Murphy D V, Butterbach-Bahl K.Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agriculture, Ecosystem & Environment, 2013, 167(2): 23-32. [9] Zhou K Q, Sui Y Y, Liu X B, et al. Crop rotation with nine-year continuous cattle manure addition restores farmland productivity of artificially eroded mollisols in Northeast China. Field Crop Research, 2015, 171: 138-145. [10] Zou X X, Zhang Q, Zhang X J, et al. Carbon footprint analysis on maize-peanut wide-band intercropping. Journal of Peanut Science, 2017, 46(2): 11-17. 邹晓霞, 张巧, 张晓军, 等. 玉米花生宽幅间作碳足迹初探. 花生学报, 2017, 46(2): 11-17. [11] Yang X L, Chen Y Q, Pacenka S, et al. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. Journal of Hydrology, 2015, 522: 428-438. [12] Wang C T, Li S K.Assessment of limiting factors and techniques prioritization for maize production in China. Scientia Agricultura Sinica, 2010,43(6): 1136-1146. 王崇桃, 李少昆. 玉米生产限制因素评估与技术优先序. 中国农业科学, 2010, 43(6): 1136-1146. [13] Zuo Y M, Liu Y X, Zhang F S,et al. Studies on the improvement iron nutrition of peanut intercropping with maize on nitrogen fixation at early stages of growth of peanut on a calcareous soil. Soil Science and Plant Nutrition, 2004, 50(7): 1071-1078. [14] Zhang J E, Gao A X, Xu H Q, et al. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrients content. Chinese Journal of Applied Ecology, 2009, 20(7): 1597-1602. 章家恩, 高爱霞, 徐华勤, 等. 玉米花生间作对土壤微生物和土壤养分状况的影响. 应用生态学报, 2009, 20(7): 1597-1602. [15] Schansker G, Srivastava A, Govindjee, et al. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 2003, 30(7): 785-796. [16] Strasser R J, Tsimill-Michael M, Srivastava A.Analysis of the chlorophyll a fluorescence transient//Papageorgiou G C, Govindjee. Chlorophyll a fluorescence a signature of photosynthesis. Netherlands: KAP Press, 2004: 321-362. [17] Zhang Z S, Yang C, Gao H Y.Photoinhibition and recovery of photosystem I in low temperature. Plant Physiology Journal, 2013, 49(4): 301-308. 张子山, 杨程, 高辉远. 植物光系统I的低温光抑制及恢复. 植物生理学报, 2013, 49(4): 301-308. [18] Li Z Z, Liu D H, Zhao S W, et al. Mechanisms of photoinhibition induced by high light in Hosta grown outdoors. Chinese Journal of Plant Ecology, 2014, 38(7): 720-728. 李志真, 刘东焕, 赵世伟, 等. 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 2014, 38(7): 720-728. [19] Li G, Gao H Y, Zhao B, et al. Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage. Acta Agronomica Sinica, 2009, 35(10): 1916-1922. 李耕, 高辉远, 赵斌, 等. 灌浆期干旱胁迫对玉米叶片光系统活性的影响. 作物学报, 2009, 35(10): 1916-1922. [20] Zhang Z S, Li G, Gao H Y, et al. Changes of photochemical activities during leaf senescence in green keeping and early growing varieties of maize. Acta Agronomica Sinica, 2013, 39(1): 93-100. 张子山, 李耕, 高辉远, 等. 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化. 作物学报, 2013, 39(1): 93-100. [21] Zhang Z S, Yang C, Gao H Y, et al. Relationship between chlorophyll degradation and photochemical activity of leaf during senescence of green corn and early aged maize. Scientia Agricultura Sinica, 2012, 45(23): 4794-4800. 张子山, 杨程, 高辉远, 等. 保绿玉米与早衰玉米叶片衰老过程中叶绿素降解与光合作用光化学活性的关系. 中国农业科学, 2012, 45(23): 4794-4800. [22] Zheng B, Zhao W, Xu Z, et al. Effects of different tillage methods and nitrogen fertilizer types on photosynthetic characteristics of summer maize. Acta Agronomica Sinica, 2017, 43(6): 925-934. 郑宾, 赵伟, 徐铮, 等. 不同耕作方式与氮肥类型对夏玉米光合性能的影响. 作物学报, 2017, 43(6): 925-934. [23] Jiang D, Dai T Q, Cao W, et al. Effects of long-term fertilization on leaf photosynthetic characteristics and grain yield in winter wheat. Photosynthetica, 2004, 42(3): 439-446. [24] Evans L T, Dunstone R L.Some physiological aspects of evolution in wheat. Australian Journal of Biological Sciences, 1970, 23(23): 725-742. [25] Wang S G, Li Z Q, Jia S S, et al. Relationships of wheat leaf stomatal traits with wheat yield and drought-resistance. Chinese Journal of Applied Ecology, 2013, 24(6): 1609-1614. 王曙光, 李中青, 贾寿山, 等. 小麦叶片气孔性状与产量和抗旱性的关系. 应用生态学报, 2013, 24(6): 1609-1614. [26] Jiang Y C.Effects of maize-peanut intercropping on soil fertility characteristics. Luoyang: Henan University of Science and Technology, 2015. 姜玉超. 玉米花生间作对土壤肥力特性的影响. 洛阳: 河南科技大学, 2015. [27] Lin Z H, Chen L S, Chen R B, et al. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biology, 2009, 9(1): 43. [28] Ma S Y, Li S, Ma L, et al. Photosynthetic response to stage drought and rehydration in spring wheat at flowering stage. Journal of Gansu Agricultural University, 2018, 53(4): 34-40. 马绍英, 李胜, 马蕾, 等. 春小麦对生殖生长期阶段性干旱与复水的光合生理响应. 甘肃农业大学学报, 2018, 53(4): 34-40. [29] Govindjee E.Sixty-three years since Kautsky: Chlorophyll a fluorescence. Australian Journal Plant Physiology, 1995, 22: 131-160. [30] Yang Q, Han J L, Li Y M, et al. Effects of different phosphorus application on photosynthetic and yield characters of flag leaf of barley. Journal Plant Nutrition and Fertilizer, 2016, 12(6): 816-821. 杨晴, 韩金玲, 李雁鸣, 等. 不同施磷量对小麦旗叶光合性能和产量性状的影响. 植物营养与肥料学报, 2006, 12(6): 816-821. |