[1] Houghton R A. Counting terrestrial sources and sinks of carbon. Climatic Change, 2001, 48(4): 525-534. [2] Ahlstrom A, Raupach M R, Schurgers G, et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 2015, 348: 895-899. [3] Bai Y F, Chen S P. Carbon sequestration of Chinese grassland ecosystems: Stock, rate and potential. Chinese Journal of Plant Ecology, 2018, 42(3): 261-264. 白永飞, 陈世苹. 中国草地生态系统固碳现状、速率和潜力研究. 植物生态学报, 2018, 42(3): 261-264. [4] Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184. [5] Zhao L, Gu S, Zhou H K, et al. CO2 fluxes of artificial grassland in the source region of the three rivers in the Qinhai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2008, (3): 544-554. 赵亮, 古松, 周华坤, 等. 青海省三江源区人工草地生态系统CO2通量. 植物生态学报, 2008, (3): 544-554. [6] Wang L, Liu H Z, David S, et al. Transfer characteristics of water vapor and CO2 flux over Leymus chinensis and Stipa grandis steppe surfaces in Inner Mongolia. Plateau Meteorology, 2010, 29(3): 605-613. 王雷, 刘辉志, David S, 等. 内蒙古羊草和大针茅草原下垫面水汽、CO2通量输送特征. 高原气象, 2010, 29(3): 605-613. [7] Yuan G H. Land-atmosphere interaction and its impacts on the regional climate in arid and semiarid regions in China. Lanzhou: Lanzhou University, 2018. 苑广辉. 中国干旱半干旱区陆气相互作用及其对区域气候的影响. 兰州: 兰州大学, 2018. [8] Xu K P, Wang J J, Chi Y Y, et al. Spatial optimization and sustainable use of land based on an integrated ecological risk in the Yun-Gui Plateau region. Acta Ecologica Sinica, 2016, 36(3): 821-827. 许开鹏, 王晶晶, 迟妍妍, 等. 基于综合生态风险的云贵高原土地利用优化与持续利用对策. 生态学报, 2016, 36(3): 821-827. [9] Huang Q. The potential, challenge and supporting system for the ecological animal husbandry development in karst area. Pratacultural Science, 2008, 25(9): 14-18. 黄黔. 岩溶地区发展生态畜牧业的潜力、问题和支撑体系. 草业科学, 2008, 25(9): 14-18. [10] Xu Y F, Zhang Y L, Pan W S. Dynamic change of spatial and temporal pattern of vegetation NPP in Yungui Plateau. Environment and Sustainable Development, 2018, 43(1): 96-99. 许玉凤, 张永雷, 潘网生. 云贵高原植被净初级生产力(NPP)时空格局动态变化. 环境与可持续发展, 2018, 43(1): 96-99. [11] Zhao Y G, Hong Q H, Xie P, et al. The nutritional value evaluation of artificial grassland in karst region in Yunnan-Guizhou Plateau. Acta Prataculturae Sinica, 2012, 21(1): 1-9. 赵彦光, 洪琼花, 谢萍, 等. 云贵高原石漠化地区人工草场营养价值评价研究. 草业学报, 2012, 21(1): 1-9. [12] Xu J X, Chen X K, Huang X. Analysis of mutation characteristics of precipitation in Meitan County. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2014, 35(2): 6-11. 徐建新, 陈学凯, 黄鑫. 湄潭县降水突变特征分析. 华北水利水电大学学报(自然科学版), 2014, 35(2): 6-11. [13] Liu Z C, Han L B. Research on ecological and climatic regionalization for turfgrass in China based on ArcGIS. Pratacultural Science, 2018, 35(5): 1030-1039. 刘卓成, 韩烈保. 基于ArcGIS的中国草坪生态气候区划研究. 草业科学, 2018, 35(5): 1030-1039. [14] Sun Z G, Chen Y Z, Li J L, et al. Research on spatio-temporal variation of grassland ecosystem productivity in Yunnan-Guizhou-Sichuan Provinces from 1996 to 2015. Resource and Environment in the Yangtze Basin, 2017, 26(10): 1677-1686. 孙政国, 陈奕兆, 李建龙, 等. 1996~2015年云贵川草地生态系统生产力的时空格局. 长江流域资源与环境, 2017, 26(10): 1677-1686. [15] Lee X H, Finnigan J, Paw U K T. Coordinate systems and flux bias error//Lee X H, Massman W J, Law B E. Handbook of micrometeorology: A guide for surface flux measurement and analysis. Boston, USA: Kluwer Academic Publishers, 2004: 33-66. [16] Lee X H, Massman W J. A perspective on thirty years of the Webb, Pearman and Leuning density corrections. Boundary-Layer Meteorology, 2011, 139(1): 37-59. [17] Zhang F W, Li Y N, Cao G M, et al. CO2 fluxes and their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai Lake, China. Chinese Journal of Plant Ecology, 2012, 36(3): 187-198. 张法伟, 李英年, 曹广民, 等. 青海湖北岸高寒草甸草原生态系统CO2通量特征及其驱动因子. 植物生态学报, 2012, 36(3): 187-198. [18] Kato T, Tang Y, Song G U, et al. Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 2006, 12(7): 1285-1298. [19] Flanagan L B, Wever L A, Carlson P J. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 2002, 8(7): 599-615. [20] Li S G, Asanuma J, Eugster W, et al. Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology, 2005, 11(11): 1941-1955. [21] He F Q, Li Q, Chen D D, et al. Variation characteristics of CO2 fluxes of Elymus nutans artificial grassland for a planting cycle in the agro-pastoral transition area of Sanjiangyuan. Ecology and Environmental Sciences, 2019, 28(5): 918-929. 贺福全, 李奇, 陈懂懂, 等. 三江源农牧交错区一个种植周期的垂穗披碱草人工草地CO2通量变化特征. 生态环境学报, 2019, 28(5): 918-929. [22] Niu Y Y, Li Y Q, Wang X Y, et al. Characteristics of annual variation in net carbon dioxide flux in a sandy grassland ecosystem during dry years. Acta Prataculturae Sinica, 2018, 27(1): 215-221. 牛亚毅, 李玉强, 王旭洋, 等. 干旱年份沙质草地生态系统净CO2通量年变化特征. 草业学报, 2018, 27(1): 215-221. [23] Du Q, Liu H Z, Feng J W, et al. Carbon dioxide exchange processes over the grassland ecosystems in semiarid areas of China. Science in China: Earth Science, 2012, 42(5): 711-722. 杜群, 刘辉志, 冯健武, 等. 半干旱区草原生态系统的碳交换特征. 中国科学:地球科学, 2012, 42(5): 711-722. [24] Shi P L, Sun X M, Xu L L, et al. The net carbon flux and its influencing factors in Tibetan alpine steppe meadow ecosystem. Science in China: Earth Science, 2006, (S1): 194-203. 石培礼, 孙晓敏, 徐玲玲, 等. 西藏高原草原化嵩草草甸生态系统CO2净交换及其影响因子. 中国科学: 地球科学, 2006, (S1): 194-203. [25] Zhu Z K, Ma Y M, Hu Z Y, et al. Net ecosystem carbon dioxide exchange in alpine meadow of Nagchu Region over Qinghai-Xizang Plateau. Plateau Meteorology, 2015, 34(5): 1217-1223. 朱志鹍, 马耀明, 胡泽勇, 等. 青藏高原那曲高寒草甸生态系统CO2净交换及其影响因子. 高原气象, 2015, 34(5): 1217-1223. [26] Wang H B, Ma M G, Wang X F, et al. Carbon flux variation characteristics and its influencing factors in an alpine meadow ecosystem on eastern Qinghai-Tibetan Plateau. Journal of Arid Land Resource and Environment, 2014, 28(6): 50-56. 王海波, 马明国, 王旭峰, 等. 青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素. 干旱区资源与环境, 2014, 28(6): 50-56. [27] Chen Y P, Niu Y Y, Li W, et al. Characteristics of carbon flux in sandy grassland ecosystem under natural restoration in Horqin sandy land. Plateau Meteorology, 2019, 38(3): 650-659. 陈银萍, 牛亚毅, 李伟, 等. 科尔沁沙地自然恢复沙质草地生态系统碳通量特征. 高原气象, 2019, 38(3): 650-659. [28] Wu F T, Cao S K, Cao G C, et al. Variation of CO2 flux of alpine wetland ecosystem of Kobresia tibetica wet meadow in Lake Qinghai. Journal of Ecology and Rural Environment, 2018, 34(2): 124-131. 吴方涛, 曹生奎, 曹广超, 等. 青海湖高寒藏嵩草湿草甸湿地生态系统CO2通量变化特征. 生态与农村环境学报, 2018, 34(2): 124-131. [29] Niu Y Y, Li Y Q, Gong X W, et al. The characteristic of net ecosystem carbon exchange and the contribution of soil respiration during the growing season in sandy grassland. Chinese Journal of Ecology, 2017, 36(9): 2423-2430. 牛亚毅, 李玉强, 龚相文, 等. 沙质草地生长季生态系统碳净交换量特征及土壤呼吸贡献率. 生态学杂志, 2017, 36(9): 2423-2430. [30] Zhao Y H, Zhao L, Du E J, et al. Study on the CO2 flux characteristic in the Tangguala alpine meadow ecosystem of the Qinghai-Xizang Plateau. Plateau Meteorology, 2011, 30(2): 525-531. 赵拥华, 赵林, 杜二计, 等. 唐古拉地区高寒草甸生态系统CO2通量特征研究. 高原气象, 2011, 30(2): 525-531. [31] Hao Y B, Wang Y F, Sun X M, et al. Seasonal variation in carbon exchange and its ecological analysis over Leymus chinensissteppe in Inner Mongolia. Science in China: Earth Science, 2006, 49(Supple 2): 186-195. |