Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (2): 93-101.DOI: 10.11686/cyxb2020319
Previous Articles Next Articles
Zhen-lian FAN1(), Yang-jie JIA2, Yuan FAN1, Hui-ping SONG1, Zheng-jun FENG3()
Received:
2020-07-07
Revised:
2020-09-29
Online:
2021-02-20
Published:
2021-01-19
Contact:
Zheng-jun FENG
Zhen-lian FAN, Yang-jie JIA, Yuan FAN, Hui-ping SONG, Zheng-jun FENG. Growth of Elymus nutans in saline saline-alkali soil amended with calcium silicate slag: Performance and mechanism[J]. Acta Prataculturae Sinica, 2021, 30(2): 93-101.
成分 Component | 含量 Content (WB%) | 成分 Component | 含量 Content (WB%) |
---|---|---|---|
SO3 | 36.95 | TiO2 | 0.60 |
CaO | 31.80 | Na2O | 0.37 |
SiO2 | 20.20 | K2O | 0.17 |
Al2O3 | 3.82 | 其他Others | 3.42 |
Fe2O3 | 1.79 | 总计Total | 100.00 |
MgO | 0.88 |
Table 1 Chemical composition of silica-calcium slag
成分 Component | 含量 Content (WB%) | 成分 Component | 含量 Content (WB%) |
---|---|---|---|
SO3 | 36.95 | TiO2 | 0.60 |
CaO | 31.80 | Na2O | 0.37 |
SiO2 | 20.20 | K2O | 0.17 |
Al2O3 | 3.82 | 其他Others | 3.42 |
Fe2O3 | 1.79 | 总计Total | 100.00 |
MgO | 0.88 |
成分 Component | 含量 Content (WB%) | 成分 Component | 含量 Content (WB%) |
---|---|---|---|
SO3 | 51.05 | Fe2O3 | 0.31 |
CaO | 44.50 | MgO | 0.20 |
SiO2 | 1.34 | 其他Others | 1.54 |
Al2O3 | 1.06 | 总计Total | 100.00 |
Table 2 Chemical composition of desulphurized gypsum
成分 Component | 含量 Content (WB%) | 成分 Component | 含量 Content (WB%) |
---|---|---|---|
SO3 | 51.05 | Fe2O3 | 0.31 |
CaO | 44.50 | MgO | 0.20 |
SiO2 | 1.34 | 其他Others | 1.54 |
Al2O3 | 1.06 | 总计Total | 100.00 |
改良剂添加量 Amount of modifier added (g·kg-1) | 钙元素含量 Calcium content (mg·g-1) | 钠元素含量 Sodium content (mg·g-1) | 镁元素含量 Magnesium content (mg·g-1) | 钾元素含量 Potassium content (mg·g-1) |
---|---|---|---|---|
0 | 0.68±0.01c | 0.34±0.06ab | 0.13±0.01a | 0.017±0.002a |
10 | 0.70±0.08c | 0.37±0.08ab | 0.14±0.01a | 0.014±0.001b |
25 | 1.33±0.01b | 0.51±0.10a | 0.15±0.04a | 0.012±0.001b |
50 | 1.34±0.11b | 0.52±0.04a | 0.16±0.01a | 0.011±0.001b |
50 (DG) | 2.12±0.10a | 0.19±0.03b | 0.06±0.01b | 0.009±0.001b |
Table 3 The content of potassium, calcium, sodium and magnesium in soil of different treatment groups with different modifiers
改良剂添加量 Amount of modifier added (g·kg-1) | 钙元素含量 Calcium content (mg·g-1) | 钠元素含量 Sodium content (mg·g-1) | 镁元素含量 Magnesium content (mg·g-1) | 钾元素含量 Potassium content (mg·g-1) |
---|---|---|---|---|
0 | 0.68±0.01c | 0.34±0.06ab | 0.13±0.01a | 0.017±0.002a |
10 | 0.70±0.08c | 0.37±0.08ab | 0.14±0.01a | 0.014±0.001b |
25 | 1.33±0.01b | 0.51±0.10a | 0.15±0.04a | 0.012±0.001b |
50 | 1.34±0.11b | 0.52±0.04a | 0.16±0.01a | 0.011±0.001b |
50 (DG) | 2.12±0.10a | 0.19±0.03b | 0.06±0.01b | 0.009±0.001b |
改良剂添加量 Amount of modifier added (g·kg-1) | 植物单株生物量 The weight of per plant (g) | 植物总生物量 The total weight of plant (g) | 根长 Root length (cm) | 株高 Plant height (cm) |
---|---|---|---|---|
0 | 0.05±0.01ab | 0.93±0.43d | 4.75±0.75bc | 20.17±0.44c |
10 | 0.07±0.01ab | 3.56±0.37c | 4.90±0.06bc | 22.00±0.50b |
25 | 0.11±0.01a | 5.16±0.39b | 6.23±0.15ab | 23.50±0.29a |
50 | 0.13±0.05a | 7.22±0.18a | 6.66±0.90a | 23.67±0.44a |
50 (DG) | 0.04±0.01b | 7.03±0.26a | 4.22±0.25c | 17.34±0.25d |
Table 4 The plant height, root length and biomass of plant with different treatment groups
改良剂添加量 Amount of modifier added (g·kg-1) | 植物单株生物量 The weight of per plant (g) | 植物总生物量 The total weight of plant (g) | 根长 Root length (cm) | 株高 Plant height (cm) |
---|---|---|---|---|
0 | 0.05±0.01ab | 0.93±0.43d | 4.75±0.75bc | 20.17±0.44c |
10 | 0.07±0.01ab | 3.56±0.37c | 4.90±0.06bc | 22.00±0.50b |
25 | 0.11±0.01a | 5.16±0.39b | 6.23±0.15ab | 23.50±0.29a |
50 | 0.13±0.05a | 7.22±0.18a | 6.66±0.90a | 23.67±0.44a |
50 (DG) | 0.04±0.01b | 7.03±0.26a | 4.22±0.25c | 17.34±0.25d |
改良剂添加量 Amount of modifier added (g·kg-1) | 钙元素含量 Calcium content (mg·g-1) | 钠元素含量 Sodium content (mg·g-1) | 镁元素含量 Magnesium content (mg·g-1) | 钾元素含量 Potassium content (mg·g-1) |
---|---|---|---|---|
0 | 0.48±0.02b | 0.35±0.02a | 0.195±0.006b | 0.63±0.02c |
10 | 0.63±0.04a | 0.31±0.01bc | 0.196±0.008b | 0.64±0.02bc |
25 | 0.67±0.02a | 0.35±0.01ab | 0.228±0.006a | 0.68±0.02ab |
50 | 0.72±0.02a | 0.28±0.01c | 0.205±0.005b | 0.70±0.02a |
50 (DG) | 0.18±0.03c | 0.08±0.01d | 0.052±0.002c | 0.30±0.01d |
Table 5 The content of potassium, calcium, sodium and magnesium in plant of different treatment groups with different modifiers
改良剂添加量 Amount of modifier added (g·kg-1) | 钙元素含量 Calcium content (mg·g-1) | 钠元素含量 Sodium content (mg·g-1) | 镁元素含量 Magnesium content (mg·g-1) | 钾元素含量 Potassium content (mg·g-1) |
---|---|---|---|---|
0 | 0.48±0.02b | 0.35±0.02a | 0.195±0.006b | 0.63±0.02c |
10 | 0.63±0.04a | 0.31±0.01bc | 0.196±0.008b | 0.64±0.02bc |
25 | 0.67±0.02a | 0.35±0.01ab | 0.228±0.006a | 0.68±0.02ab |
50 | 0.72±0.02a | 0.28±0.01c | 0.205±0.005b | 0.70±0.02a |
50 (DG) | 0.18±0.03c | 0.08±0.01d | 0.052±0.002c | 0.30±0.01d |
1 | Liu J. Comparison of adaptation mechanism to alkali stress and salt stress in sunflower. Changchun: Northeast Normal University, 2011. |
刘杰. 向日葵对碱胁迫和盐胁迫适应机制比较. 长春: 东北师范大学, 2011. | |
2 | Chu L L, Luo C K, Tian L, et al, Research advance in plants’ adaptation to alkali stress. Journal of Plant Genetic Resources, 2019, 20(4): 836-844. |
楚乐乐, 罗成科, 田蕾, 等. 植物对碱胁迫适应机制的研究进展. 植物遗传资源学报, 2019, 20(4): 836-844. | |
3 | Jin W W, Zhang H H, Teng Z Y, et al. Effects of salt and alkali interaction stress on chlorophyll fluorescence in leaves of Sorghumbicolor×S. sudanense. Pratacutural Science, 2017, 34(10): 2090-2098. |
金微微, 张会慧, 滕志远, 等. 盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响. 草业科学, 2017, 34(10): 2090-2098. | |
4 | Yang X H, Jiang W J, Wei M, et al. Review on plant response and resistance mechanism to salt stress. Journal of Shandong Agricultural University (Natural Science Edition), 2006(2): 302-305, 308. |
杨晓慧, 蒋卫杰, 魏珉, 等. 植物对盐胁迫的反应及其抗盐机理研究进展. 山东农业大学学报(自然科学版), 2006(2): 302-305, 308. | |
5 | Wang L X, Fang C, Wang K. Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses. Journal of Plant Nutrition, 2015, 38(4): 526-540. |
6 | Ren P F, Shang L X, Cai Q A, et al. Research progress of plant alkali tolerance and its application prospect in soybean. Soybean Science, 2019, 38(6): 977-985. |
任鹏飞, 尚丽霞, 蔡勤安, 等. 植物耐碱性研究进展及其在大豆中的应用展望. 大豆科学, 2019, 38(6): 977-985. | |
7 | Gong B, Wang X F, Wei M, et al. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 124(2): 377-391. |
8 | Ma H, Yang H, Lü X, et al. Does high pH give a reliable assessment of the effect of alkaline soil on seed germination? A case study with Leymus chinensis (Poaceae). Plant and Soil, 2015, 394(1/2): 35-43. |
9 | Yan H, Zhao W, Sheng Y M, et al. Effects of alkali-stress on Aneurolepidium chinense and Helianthus annuus. Chinese Journal of Applied Ecology, 2005(8): 1497-1501. |
颜宏, 赵伟, 盛艳敏, 等. 碱胁迫对羊草和向日葵的影响. 应用生态学报, 2005(8): 1497-1501. | |
10 | Wang S J, Chen Q, Li Y, et al. Research on saline-alkali soil amelioration with FGD gypsum. Resources, Conservation & Recycling, 2016, 121: 82-92. |
11 | Peter M K. Interactions between Ca, Mg, Na and K: Alleviation of toxicity in saline solutions. Plant and Soil, 2012, 352(1/2): 353-362. |
12 | Fu J J, Sun P Y, Luo Y L, et al. Brassinosteroids enhance cold tolerance in Elymus nutans via mediating redox homeostasis and proline biosynthesis. Environmental and Experimental Botany, 2019, 167: 1-11. |
13 | Chen J H, Wang P, Wang P, et al. Comparison of chilling resistance of six Elymus germplasms. Pratacultural Science, 2019, 36(6): 1591-1599. |
陈玖红, 王沛, 王平, 等. 6份披碱草属牧草种质材料抗寒性的比较. 草业科学, 2019, 36(6): 1591-1599. | |
14 | Feng R Z, Long R J, Shang Z H, et al. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China. Plant and Soil, 2010, 327(1): 403-411. |
15 | Yang Z J, Sun J M, Diao M L, et al. Discussion on reaction mechanism of flue gas desulfurization with silicate-calcium slag generated in process of extracting alumina from fly ash. Light Metals, 2018(9): 17-20. |
杨志杰, 孙俊民, 刁美玲, 等. 粉煤灰提铝后硅钙渣用于烟气脱硫反应机理探讨. 轻金属, 2018(9): 17-20. | |
16 | Yang R, Julie A H, Bobby R G. Calcium silicate slag reduces drought stress in rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 2019, 205(4): 253-361. |
17 | Wang M, Wang J J, Tafti N D. Effect of alkali-enhanced biochar on silicon uptake and suppression of gray leaf spot development in perennial ryegrass. Crop Protection, 2019, 119: 9-16. |
18 | Yang H G. Impacts of calcium silicate slag on the availability of silicon and trace contaminants in rice (Oryza sativa L.). Communications in Soil Science and Plant Analysis, 2019, 50(2): 173-184. |
19 | Alvarez J, Snyder G H, Anderson D L, et al. Economics of calcium silicate slag application in a rice-sugarcane rotation in the everglades. Agricultural Systems, 1988, 28(3): 179-188. |
20 | Brecht M O, Datnoff L E, Kucharek T A, et al. Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustinegrass. Plant Disease, 2004, 88(4): 338-344. |
21 | Shu L Z, Liu Y H. Effects of silicon on membrane lipid peroxidation and protective systems in the leaves of maize seedlings under salt stress. Journal of Xiamen University (Natural Science Edition), 2001(6): 1295-1300. |
束良佐, 刘英慧. 硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响. 厦门大学学报(自然科学版), 2001(6): 1295-1300. | |
22 | Zhu Y X. Alleviative effects and mechanisms of silicon on salt stress-induced damage in cucumber seedlings. Yangling: Northwest A&F University, 2016. |
朱永兴. 硅对黄瓜幼苗盐胁迫损伤的缓解效应及机理研究. 杨凌: 西北农林科技大学, 2016. | |
23 | Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance. World Science and Technology Research and Development, 2006, 28(4): 70-76. |
杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理. 世界科技研究与发展, 2006, 28(4): 70-76. | |
24 | Wang B, Xiao G J, Yang J, et al. Effects of coal-fired flue gas desulfurated waste residue application on sweet sorghum cultivation on alkali soil. Agricultural Research in the Arid Areas, 2010, 28(6): 206-211. |
王彬, 肖国举, 杨涓, 等. 燃煤烟气脱硫废弃物施用对碱化土壤种植甜高粱的影响. 干旱地区农业研究, 2010, 28(6): 206-211. | |
25 | Jiang T X, Chen H, Zhang Y L, et al. Safety evaluation of different application rates of desulfurization gypsum on saline-alkali land improvement. Xinjiang Agricultural Sciences, 2019, 56(3): 438-445. |
姜同轩, 陈虹, 张玉龙, 等. 脱硫石膏不同施用量对盐碱地改良安全性评价. 新疆农业科学, 2019, 56(3): 438-445. | |
26 | Zhou Y. Research on effects of desulfurization gypsum and humic acid on saline soil improvement. Hohhot: Inner Mongolia Agricultural University, 2016. |
周阳. 脱硫石膏与腐植酸改良盐碱土效果研究. 呼和浩特: 内蒙古农业大学, 2016. | |
27 | Zhang W H, Chen Y H, Liu Y L. Calcium action signal transduction in plant cells under salt stress. Plant Physiology Newsletter, 2000(2): 146-153. |
章文华, 陈亚华, 刘友良. 钙在植物细胞盐胁迫信号转导中的作用. 植物生理学通讯, 2000(2): 146-153. | |
28 | Wang J, Xu X, Xiao G J, et al. Effect of typical takyr solonetzs reclamation with flue flue gas desulphurization gypsum and its security assessment. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 141-147. |
王静, 许兴, 肖国举, 等. 脱硫石膏改良宁夏典型龟裂碱土效果及其安全性评价. 农业工程学报, 2016, 32(2): 141-147. | |
29 | Chen Y W, Ma K, Hu J T, et al. Effect of desulphurization waste on rice growing development and soil. Journal of Ningxia University (Natural Science Edition), 2011, 32(3): 288-292. |
陈永伟, 马琨, 胡景田, 等. 脱硫废弃物改良盐碱地对水稻生长发育及土壤的影响. 宁夏大学学报(自然科学版), 2011, 32(3): 288-292. | |
30 | Zhu X, Shi L, He L Q. Effects of aluminum-extracion residues of fly ash: The silicate-calcium slag on soil nutrient and the growth and quality of celery . Journal of Northwest Normal University (Natural Science), 2019, 55(3): 98-104. |
朱潇, 石林, 何柳青. 粉煤灰提铝渣对土壤养分及芹菜生长与品质的影响. 西北师范大学学报(自然科学版), 2019, 55(3): 98-104. | |
31 | Zhang Q, Li X J, Zhang S Y. Effects of silicon on growth and osmotic regulation of cotton seedlings under salt stress. Acta Agriculturae Boreali-Sinica, 2019, 34(6): 110-117. |
张倩, 李笑佳, 张淑英. 硅对盐胁迫下棉花幼苗生长和渗透调节系统的影响.华北农学报, 2019, 34(6): 110-117. | |
32 | Li Y B, Xu Q T, Gao B, et al. Effect of desulfurization gypsum improvement on the growth of alfalfa. Jiangsu Agricultural Sciences, 2015, 43(3): 188-190. |
李玉波, 许清涛, 高标, 等. 脱硫石膏改良盐碱地对紫花苜蓿生长的影响. 江苏农业科学, 2015, 43(3): 188-190. |
[1] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[2] | ZHAO Ying, WEI Xiao-hong, LI Tao-tao. Effects of exogenous nitric oxide on seed germination and seedling growth of Chenopodium quinoa under complex saline-alkali stress [J]. Acta Prataculturae Sinica, 2020, 29(4): 92-101. |
[3] | SHEN Wu-yan, FENG Zheng-jun, QIN Wen-fang, FAN Yuan. Effects of saline-alkali stress on the growth and ion micro-distribution of ryegrass plants [J]. Acta Prataculturae Sinica, 2020, 29(2): 52-63. |
[4] | ZHAO Ying, WEI Xiao-hong, HE Ya-long, ZHAO Xiao-fei, HAN Ting, YUE Kai, XIN Xia-qing, SU Mei-fei, MA Wen-jing, LUO Qiao-juan. Effects of complex saline-alkali stress on seed germination and seedling antioxidant characteristics of Chenopodium quinoa [J]. Acta Prataculturae Sinica, 2019, 28(2): 156-167. |
[5] | LI Li, ZHANG Yi-Gong, JIANATI, LI Xue-Sen. Seed germination and physiological responses of Vicia costata under saline-alkali stress conditions [J]. Acta Prataculturae Sinica, 2016, 25(9): 46-53. |
[6] | ZHANG Yang, GUO Hai-jun, LIU Long-biao, WANG Sa, LIANG Ying, NIE Yu-zhe, LI Yu-hua. Cloning and expression of PtGAPDH from Puccinellia tenuiflora [J]. Acta Prataculturae Sinica, 2014, 23(2): 207-214. |
[7] | ZHAO Yu-yu, HUANG De-jun, MAO Zhu-xin, NIE Bin, FU Hua. A study on forage nutritional quality of Elymus nutans from different populations in the Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2013, 22(1): 38-45. |
[8] | ZHANG Miao-qing, ZHANG Ji-yu, LIU Zhi-peng, WANG Yan-rong, ZHANG Lei. Cloning and analysis of the MADS-box gene WM8 of Elymus nutans [J]. Acta Prataculturae Sinica, 2012, 21(4): 141-150. |
[9] | ZHANG Miao-qing, WANG Yan-rong, ZHANG Ji-yu, LIU Zhi-peng, ZHANG Lei, NIE Bin, ZHOU Jing. A study on genetic diversity of reproductive characters in Elymus nutans germplasm resources [J]. Acta Prataculturae Sinica, 2011, 20(3): 182-191. |
[10] |
XIE Guo-ping, HU Tian-ming, WANG Quan-zhen, MIAO Yan-jun, Bianbadroma, ZHU Yong, XIONG Xiao-rui. A study on the impact of nitrogen application and harvest time on theseed yield of Tibetan wild Elymus nutans in Lhasa valley, Tibet [J]. Acta Prataculturae Sinica, 2010, 19(2): 89-96. |
[11] | WU Jian-shuang, SHEN Zhen-xi, ZHANG Xian-zhou, FU Gang. Effect of nitrogen fertilizer application on Elymus nutans biomass allocationin an alpine meadow zone on the Tibetan Plateau [J]. Acta Prataculturae Sinica, 2009, 18(6): 113-121. |
[12] | CHEN Zhi-hua, MIAO Jia-min, ZHONG Jin-cheng, MA Xiao, CHEN Shi-yong, ZHANG Xin-quan. Genetic diversity of wild Elymus nutans germplasm detected by SRAP markers [J]. Acta Prataculturae Sinica, 2009, 18(5): 192-200. |
[13] | ZHANG Yong-feng, LIANG Zheng-wei, SUI Li, CUI Yan-ru. Effect on physiological characteristic of Medicago sativa under saline-alkali stress at seeding stage [J]. Acta Prataculturae Sinica, 2009, 18(4): 230-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||