Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (3): 68-80.DOI: 10.11686/cyxb2020150
Previous Articles Next Articles
Zhi-peng CHANG1(), Ying-ying SUN1, Jia-yang LI1, Chun-mei GONG2()
Received:
2020-03-31
Revised:
2020-08-10
Online:
2021-03-20
Published:
2021-03-09
Contact:
Chun-mei GONG
Zhi-peng CHANG, Ying-ying SUN, Jia-yang LI, Chun-mei GONG. Cloning and transformation of the CkCAD gene in Caragana korshinskii and analysis of its drought resistance function[J]. Acta Prataculturae Sinica, 2021, 30(3): 68-80.
引物名称Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
1302-CkCAD-F | GGACTCTTGACCATGATGGGTAGCCTTGAATCGG |
1302-CkCAD-R | CTTCTCCTTTACTAGCTGATCAAGTTTACTGCCTTTGAC |
Atactin-F | CACTACCGCAGAACGGGAAA |
Atactin-R | GCGATGGCTGGAACAGAACC |
CkCAD-F | TCTCTCCCCATACACCTACA |
CkCAD-R | CCTTCTCTTTCCAAAACTCC |
AtCAD-F | TAGAAGCAGGAGAAAAG |
AtCAD-R | CAGGAACCATAGGATAA |
Table 1 Primers for C. korshinskiiCkCAD conversion and quantification in this study
引物名称Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
1302-CkCAD-F | GGACTCTTGACCATGATGGGTAGCCTTGAATCGG |
1302-CkCAD-R | CTTCTCCTTTACTAGCTGATCAAGTTTACTGCCTTTGAC |
Atactin-F | CACTACCGCAGAACGGGAAA |
Atactin-R | GCGATGGCTGGAACAGAACC |
CkCAD-F | TCTCTCCCCATACACCTACA |
CkCAD-R | CCTTCTCTTTCCAAAACTCC |
AtCAD-F | TAGAAGCAGGAGAAAAG |
AtCAD-R | CAGGAACCATAGGATAA |
1 | Gao L F. The expression of related genes CkERF2 and CkCOV1 in leaf vascular development during responding drought in Caragana korshinskii. Xianyang: Northwest A&F University, 2018. |
高丽芳. 叶脉发育相关基因CkERF2和CkCOV1在柠条叶脉响应干旱中的表达研究. 咸阳: 西北农林科技大学, 2018. | |
2 | Ning P B, Zhou Y L, Gao L F, et al. Unraveling the microRNA of Caragana korshinskii along a precipitation gradient on the Loess Plateau, China, using high-throughput sequencing. PLoS One, 2017, 12(2): e0172017. |
3 | Li Y J, Zhao Z, Sun D X. Hydrological physiological characteristics of Caragana korshinskii under water stress. Journal of Northwest Forestry University, 2008, 23(3): 1-4. |
李彦瑾, 赵忠, 孙德祥.干旱胁迫下柠条锦鸡儿的水分生理特征. 西北林学院报, 2008, 23(3): 1-4. | |
4 | Yao H, Zhao X Y, Li X M. Physiological response of 3 kinds of Caragana plant seedlings on continuous drought. Journal of Anhui Agricultural Sciences, 2009, 37(9): 3915-3917. |
姚华, 赵晓英, 李晓梅. 3种锦鸡儿属植物幼苗对持续干旱的生理响应.安徽农业科学, 2009, 37(9): 3915-3917. | |
5 | Wang J J. The drought adaption of leaf functional traits in Caragana korshinskii KOM. under water gradient. Xianyang: Northwest A&F University, 2015. |
王佳佳. 水分梯度下柠条锦鸡儿叶功能属性的干旱适应性研究. 咸阳: 西北农林科技大学, 2015. | |
6 | Wei L L. Mechanism analysis of cold and drought tolerance of the transgenic Arabidopsis overexpressing DREB1 from Caragana korshinskii Kom. Hohhot: Inner Mongolia Agricultural University, 2013. |
魏丽丽. 过表达柠条锦鸡儿CkDREB1基因的拟南芥抗旱和抗冷的机理分析.呼和浩特: 内蒙古农业大学, 2013. | |
7 | Xia J X, Liu Y J, Yao S B, et al. Characterization and expression profiling of Camellia sinensis cinnamate 4-hydroxylase genes in phenylpropanoid pathways. Genes, 2017, 8(8): 193. |
8 | Turner S R, Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. The Plant Cell, 1997, 9(5): 689-701. |
9 | Xue C, Yao J L, Xue Y S, et al. PbrMYB169 positively regulates lignification of stone cells in pear fruit. Journal of Experimental Botany, 2019, 70(6): 1801-1814. |
10 | Santos A B d, Bottcher A, Kiyota E, et al. Water stress alters lignin content and related gene expression in two sugarcane genotypes. Journal of Agricultural and Food Chemistry, 2015, 63(19): 4708-4720. |
11 | Liu F R, Xie L F, Yao Z Y, et al. Equipment B: Caragana korshinskii phenylalanine ammonialyase is up-regulated in the phenylpropanoid biosynthesis pathway in response to drought stress. Biotechnology & Biotechnological Equipment, 2019, 33(1): 842-854. |
12 | Cass C L, Peraldi A, Dowd P F, et al. Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. Journal of Experimental Botany, 2015, 66(14): 4317-4335. |
13 | Sun Y Y. Study on drought response of genes related to lignin synthesis in Caragana korshinskii. Xianyang: Northwest A&F University, 2018. |
孙莹莹. 柠条锦鸡儿木质素合成基因的干旱响应研究. 咸阳: 西北农林科技大学, 2018. | |
14 | Clough S J, Bent A F. Floral dip: A simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743. |
15 | Xu C, Wang Y D, Yu Y C, et al. Degradation of MONOCULM 1 by APC/C TAD1 regulates rice tillering. Nature Communications, 2012, 3(1): 1-9. |
16 | Zhang X H, Liu T J, Duan M M, et al. De novo transcriptome analysis of Sinapis alba in revealing the glucosinolate and phytochelatin pathways. Frontiers in Plant Science, 2016, 7: 259. |
17 | Ganguly D R, Crisp P A, Eichten S R, et al. The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiology, 2017, 175(4): 1893-1912. |
18 | Marshall D M, Muhaidat R, Brown N J, et al. Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. The Plant Journal, 2007, 51(5): 886-896. |
19 | Hatfield R, Fukushima R S. Can lignin be accurately measured? Crop Science, 2005, 45(3): 832-839. |
20 | Kou X H, He Y L, Li Y F, et al. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chemistry, 2019, 270: 385-394. |
21 | Wang J B, Ding B, Guo Y L, et al. Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana. Planta, 2014, 240(1): 103-115. |
22 | Zhou W F, Liu F R, Yao Z Y, et al. Growth adaptation characteristics of three Salsola species with different photosynthetic systems. Acta Prataculturae Sinica, 2019, 28(10): 78-90. |
周文菲, 刘芙蓉, 姚甄业, 等. 猪毛菜属 3 种不同光合型物种的生长适应特征比较. 草业学报, 2019, 28(10): 78-90. | |
23 | Tang H M, Liu S Z, Hill‐Skinner S, et al. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. The Plant Journal, 2014, 77(3): 380-392. |
24 | Wang J H, Feng J J, Jia W T, et al. Genome-wide identification of sorghum bicolor laccases reveals potential targets for lignin modification. Frontiers in Plant Science, 2017, 8: 714. |
25 | Mottiar Y, Vanholme R, Boerjan W, et al. Designer lignins: Harnessing the plasticity of lignification. Current Opinion in Biotechnology, 2016, 37: 190-200. |
26 | Wang P, Dudareva N, Morgan J A, et al. Genetic manipulation of lignocellulosic biomass for bioenergy. Current Opinion in Chemical Biology, 2015, 29: 32-39. |
27 | Coleman H D, Park J Y, Nair R, et al. RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proceedings of the National Academy of Sciences, 2008, 105(11): 4501-4506. |
28 | Amrhein N, Frank G, Lemm G, et al. Inhibition of lignin formation by L-alpha-aminooxy-beta-phenylpropionic acid, an inhibitor of phenylalanine ammonia-lyase. European Journal of Cell Biology, 1983, 29(2): 139-144. |
29 | Smart C C, Amrhein N. The influence of lignification on the development of vascular tissue in Vigna radiata L. Protoplasma, 1985, 124(1/2): 87-95. |
30 | Li Z, Peng Y, Ma X. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiologiae Plantarum, 2013, 35(1): 213-222. |
31 | Cheng X, Li G, Ma C, et al. Comprehensive genome-wide analysis of the pear (Pyrus bretschneideri) laccase gene (PbLAC) family and functional identification of PbLAC1 involved in lignin biosynthesis. PLoS One, 2019, 14: e0210892. |
32 | Zhong R, Taylor J J, Ye Z H. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. The Plant Cell, 1997, 9(12): 2159-2170. |
33 | Lens F, Tixier A, Cochard H, et al. Embolism resistance as a key mechanism to understand adaptive plant strategies. Current Opinion in Plant Biology, 2013, 16(3): 287-292. |
34 | Adams H D, Zeppel M J, Anderegg W R, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 2017, 1(9): 1285-1291. |
35 | Anderegg W R, Klein T, Bartlett M, et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences, 2016, 113(18): 5024-5029. |
36 | Pereira L, Domingues-Junior A P, Jansen S, et al. Is embolism resistance in plant xylem associated with quantity and characteristics of lignin? Trees, 2017(33): 1-10. |
37 | Jansen S, Choat B, Pletsers A. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 2009, 96(2): 409-419. |
38 | Li S, Lens F, Espino S, et al. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. Iawa Journal, 2016, 37(2): 152-171. |
39 | Dória L C, Podadera D S, del Arco M, et al. Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought‐induced hydraulic failure than their herbaceous relatives. Functional Ecology, 2018, 32(6): 1467-1478. |
40 | Dória L C, Meijs C, Podadera D S, et al. Embolism resistance in stems of herbaceous Brassicaceae and Asteraceae is linked to differences in woodiness and precipitation. Annals of Botany, 2018, 20: 1-13. |
41 | Xu T, Zhao C Z, Han L, et al. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye wetland, China. Chinese Journal of Plant Ecology, 2017, 41(7): 761-769. |
徐婷, 赵成章, 韩玲, 等. 张掖湿地旱柳叶脉密度与水分利用效率的关系. 植物生态学报, 2017, 41(7): 761-769. | |
42 | Sack L, Scoffoni C. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 2013, 198(4): 983-1000. |
43 | Nardini A, Raimondo F, Lo Gullo M A, et al. Leafminers help us understand leaf hydraulic design. Plant, Cell & Environment, 2010, 33(7): 1091-1100. |
[1] | Hai-feng HE, Cheng-hong YAN, Na WU, Ji-li LIU, Yu-han JIA. Effects of different nitrogen levels on photosynthetic characteristics and drought resistance of switchgrass (Panicum virgatum) [J]. Acta Prataculturae Sinica, 2021, 30(1): 107-115. |
[2] | ZENG Ling-shuang, LI Pei-ying, SUN Xiao-fan, SUN Zong-jiu. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang province [J]. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
[3] | ZHANG Xue-ting, WANG Xin-yong, YANG Wen-xiong, LIU Na, YANG Chang-gang. Evaluation of water-saving and drought-resistant maize varieties in the Hexi oasis irrigation corridor [J]. Acta Prataculturae Sinica, 2020, 29(2): 134-148. |
[4] | Hai-tao CHANG, Ren-tao LIU, Wei CHEN, An-ning ZHANG, Xiao-an ZUO. Distribution of ground-active arthropod community structure after introduction of Caragana korshinskii into Reaumuria soongorica shrubland on the Urat desert steppe, Inner Mongolia [J]. Acta Prataculturae Sinica, 2020, 29(12): 188-197. |
[5] | YANG Liu-hui, YIN Hang, HUANG Qin-mei, ZHANG Yan-ni, HE Miao, ZHOU Yun-wei. An analysis of the response of the LpWRKY20 gene to abiotic stress and its role in drought resistance [J]. Acta Prataculturae Sinica, 2020, 29(1): 193-202. |
[6] | WU Juan-zi, QIAN Chen, LIU Zhi-wei, PAN Yu-mei, ZHONG Xiao-xian. De novo transcriptomic analysis for lignin synthesis in Cenchrus purpureus using RNA-seq [J]. Acta Prataculturae Sinica, 2019, 28(1): 150-161. |
[7] | GUO Xing, XIE Fei, YAN Qian-qian, CAO Xiu-wen, YANG Fan. Effect of fulvic acid on drought resistance of nursery stocks in a dry valley of the Bailongjiang River, Gansu [J]. Acta Prataculturae Sinica, 2018, 27(8): 86-94. |
[8] | LIU Ting-ting, CHEN Dao-qian, WANG Shi-wen, YIN Li-na, DENG Xi-ping. Physio-ecological responses to drought and subsequent re-watering in sorghum seedlings [J]. Acta Prataculturae Sinica, 2018, 27(6): 100-110. |
[9] | XU Pian-pian, WANG Jian-zhu. Drought resistance of three common slope plants determined in a simulated drought experiment [J]. Acta Prataculturae Sinica, 2018, 27(2): 36-47. |
[10] | SHI Jing-Ang, ZHANG Bing, XIAO Xiao-Lin, MA Jing-Jing, YANG Xiang-Yang, LIU Jian-Xiu. Genome-wide identification and characterization of the cinnamyl alcohol dehydrogenase gene family in Zoysia japonica [J]. Acta Prataculturae Sinica, 2017, 26(6): 111-119. |
[11] | FAN Zhi-Xia, LI Shao-Cai, SUN Hai-Long. Physiological response of Amorpha fruiticosa to drought stress under paclobutrazol application and an evaluation of drought resistance [J]. Acta Prataculturae Sinica, 2017, 26(3): 132-141. |
[12] | ZHAO Jing-Zhong, KONG Dong-Sheng, WANG Li, GUO You-Yan. Effects of low temperature stratification on emergence of Lycium ruthenicum under drought at different sowing depths [J]. Acta Prataculturae Sinica, 2017, 26(12): 56-66. |
[13] | WU Mei-Yan, HAO Ruo-Chao, ZHANG Wen-Ying. Effects of Piriformospora indica fungus on growth and drought resistance in alfalfa under water deficit stress [J]. Acta Prataculturae Sinica, 2016, 25(5): 78-86. |
[14] | LIU Ke-Biao, JIANG Sheng-Xiu. Responses of Apoceynum venetum seed germination to drought and salt stress [J]. Acta Prataculturae Sinica, 2016, 25(5): 214-222. |
[15] | WANG Yi, GUO Hai-Lin, CHEN Jing-Bo, ZONG Jun-Qin, LI Dan-Dan, JIANG Yi-Wei, LIU Jian-Xiu. Preliminary evaluation of drought resistance for the hybrid zoysiagrass ‘Suzhi No.1’ [J]. Acta Prataculturae Sinica, 2016, 25(5): 30-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||