Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (4): 170-179.DOI: 10.11686/cyxb2020181
Previous Articles Next Articles
Yi-yao HOU1,2(), Xiao LI2, Rui-cai LONG2, Qing-chuan YANG1,2, Jun-mei KANG2, Chang-hong GUO1()
Received:
2020-04-21
Revised:
2020-05-25
Online:
2021-04-20
Published:
2021-03-16
Contact:
Chang-hong GUO
Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis[J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179.
引物Primer | 引物Sequence (5'-3') |
---|---|
MsHB7F | CAAAACTTAGGCCTTAGCCATATAT |
MsHB7R | GCAACATAGAAGAACATGGTGCA |
qMsHB7F | ATGAGGGTTTGGAGGATAAAATCGT |
qMsHB7R | CAAGTCCAAAAATCCAACCATTGAG |
qMsactin2F | CAAAAGATGGCAGATGCTGAGGAT |
qMsactin2R | CATGCACCAGTATGACGAGGTCG |
pMsHB7F | TGCTCTAGAATGATGGAGGAAGAAGAG |
pMsHB7R | ACGGGATCCTCAAGTCCAAAAATCC |
MsHB7F1 | CGACACACTTGTCTACTCCAAAAAT |
MsHB7R1 | TTCAAGTCCAAAAATCCAACCATTG |
qMsHB7F1 | TGGAGCCAAGGAAGAAGATGC |
qMsHB7R1 | CCATCATGCGATGTTTCCACC |
qATactin7F | AGCTAGAGACAGCCAAGAGC |
qATactin7R | GCTTCCATTCCGATGAGCGA |
qATCAT1F | CGCCATGCCGAAAAATACCC |
qATCAT1R | CTTGCCTGTCTGAATCCCAGGAC |
qATDREB2AF | CTGGAGAATGGTGCGGAAGA |
qATDREB2AR | CAGATAGCGAATCCTGCTGTTGT |
qATLEA3F | GATTGACCCGGCTGAGCTACGA |
qATLEA3R | AGATGGGATTCACCACAAAAGA |
qATRD29AF | GATATCGACAAGGATGTGCCG |
qATRD29AR | GTATCCAGGTCTTCCCTTCGC |
Table 1 Primer list
引物Primer | 引物Sequence (5'-3') |
---|---|
MsHB7F | CAAAACTTAGGCCTTAGCCATATAT |
MsHB7R | GCAACATAGAAGAACATGGTGCA |
qMsHB7F | ATGAGGGTTTGGAGGATAAAATCGT |
qMsHB7R | CAAGTCCAAAAATCCAACCATTGAG |
qMsactin2F | CAAAAGATGGCAGATGCTGAGGAT |
qMsactin2R | CATGCACCAGTATGACGAGGTCG |
pMsHB7F | TGCTCTAGAATGATGGAGGAAGAAGAG |
pMsHB7R | ACGGGATCCTCAAGTCCAAAAATCC |
MsHB7F1 | CGACACACTTGTCTACTCCAAAAAT |
MsHB7R1 | TTCAAGTCCAAAAATCCAACCATTG |
qMsHB7F1 | TGGAGCCAAGGAAGAAGATGC |
qMsHB7R1 | CCATCATGCGATGTTTCCACC |
qATactin7F | AGCTAGAGACAGCCAAGAGC |
qATactin7R | GCTTCCATTCCGATGAGCGA |
qATCAT1F | CGCCATGCCGAAAAATACCC |
qATCAT1R | CTTGCCTGTCTGAATCCCAGGAC |
qATDREB2AF | CTGGAGAATGGTGCGGAAGA |
qATDREB2AR | CAGATAGCGAATCCTGCTGTTGT |
qATLEA3F | GATTGACCCGGCTGAGCTACGA |
qATLEA3R | AGATGGGATTCACCACAAAAGA |
qATRD29AF | GATATCGACAAGGATGTGCCG |
qATRD29AR | GTATCCAGGTCTTCCCTTCGC |
1 | Liu D, Yang L, Luo M, et al. Molecular cloning and characterization of PtrZPT2-1, a ZPT2 family gene encoding a Cys2/His2-type zinc finger protein from trifoliate orange (Poncirus trifoliata L. Raf.) that enhances plant tolerance to multiple abiotic stresses. Plant Science, 2017, 263: 66-78. |
2 | Nakashima K, Ito Y, Yamaguchi-shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 2009, 149(1): 88-95. |
3 | Tang L L, Cai H, Ji W, et al. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry, 2013, 71: 22-30. |
4 | Duan J Z, Li Y, Zhao M Z, et al. Progress on application of NAC transcription factors in plant abiotic tolerance genetic engineering. Crops, 2017(2): 14-22. |
段俊枝, 李莹, 赵明忠, 等. NAC转录因子在植物抗非生物胁迫基因工程中的应用进展. 作物杂志, 2017(2): 14-22. | |
5 | Ariel F D, Manavella P A, Dezar C A, et al. The true story of the HD-Zip family. Trends in Plant Science, 2007, 12(9): 419-426. |
6 | Vollbrecht E, Veit B, Sinha N, et al. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature, 1991, 350: 241-243. |
7 | Harris J C, Hrmova M, Lopato S, et al. Modulation of plant growth by HD-Zip class I and Ⅱ transcription factors in response to environmental stimuli. New Phytologist, 2011, 190(4): 823-837. |
8 | Zhao Y, Zhou Y Q, Jiang H Y, et al. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS One, 2011, 6(12): e28488. |
9 | Söderman E, Hjellström M, Fahleson J, et al. The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Molecular Biology, 1999, 40(6): 1073-1083. |
10 | Söderman E, Mattsson J, Engström P. The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. the Plant Journal, 1996, 10(2): 375-381. |
11 | Olsson A S B, Engström P, Söderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Molecular Biology, 2004, 55(5): 663-677. |
12 | Hjellström M, Olsson A S B, Engström P, et al. Constitutive expression of the water deficit-inducible homeobox gene ATHB7 in transgenic Arabidopsis causes a suppression of stem elongation growth. Plant, Cell & Environment, 2003, 26(7): 1127-1136. |
13 | Turchi L, Carabelli M, Ruzza V, et al. Arabidopsis HD-Zip Ⅱ transcription factors control apical embryo development and meristem function. Development, 2013, 140(10): 2118-2129. |
14 | Prigge M J, Otsuga D, Alonso J M, et al. Class Ⅲ homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. the Plant Cell, 2005, 17(1): 61-76. |
15 | Rerie W G, Feldmann K A, Marks M D. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes & Development, 1994, 8(12): 1388-1399. |
16 | Zhao M R, Shen Y H, Li Y C, et al. Research progress in the genetic engineer of alfalfa stress resistance. Acta Agrestia Sinica, 2014, 22(2): 243-248. |
赵美荣, 申玉华, 李永春, 等. 紫花苜蓿抗逆基因工程研究进展. 草地学报, 2014, 22(2): 243-248. | |
17 | Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and Evolution, 2016, 33(7): 1870-1874. |
18 | Li Z Y. Molecular cloning and functional analysis of MsHSP70 gene in Medicago sativa L. Beijing: Chinese Academy of Agricultural Science, 2015. |
栗振义. 紫花苜蓿热激蛋白基因MsHSP70的克隆及功能分析. 北京: 中国农业科学院, 2015. | |
19 | Roodbarkelari F, Groot E P. Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis. New Phytologist, 2017, 213(1): 95-104. |
20 | Sen S, Chakraborty J, Ghosh P, et al. Chickpea WRKY70 regulates the expression of a Homeodomain-Leucine Zipper (HD-Zip) I transcription factor CaHDZ12, which confers abiotic stress tolerance in transgenic tobacco and chickpea. Plant & Cell Physiology, 2017, 58(11): 1934-1952. |
21 | Zuo Z F, Kang H G, Park M Y, et al. Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis. Plant Science, 2019, 289: 110254. |
22 | Li Q, Wu Q, Wang A, et al. Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway. Plant Physiology and Biochemistry, 2019, 144: 312-323. |
23 | Ju Y L, Yue X F, Min Z, et al. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2020, 146: 98-111. |
24 | Zhao Y, Ma Q, Jin X L, et al. A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant & Cell Physiology, 2014, 55(6): 1142-1156. |
25 | Tang Y H, Bao X X, Wang S, et al. A Physic nut stress-responsive HD-Zip transcription factor, JcHDZ07, confers enhanced sensitivity to salinity stress in transgenic Arabidopsis. Frontiers in Plant Science, 2019, 10: 942. |
26 | Zhang S X, Haider I, Kohlen W, et al. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Molecular Biology, 2012, 80(6): 571-585. |
27 | Li M N, Long R C, Yang Q C, et al. Cloning and function analysis of a salt-stress-induced HD-Zip transcription factor MsHB2 from alfalfa. Scientia Agricultura Sinica, 2014, 47(4): 622-632. |
李明娜, 龙瑞才, 杨青川, 等. 紫花苜蓿盐诱导HD-Zip类转录因子MsHB2的克隆及功能分析. 中国农业科学, 2014, 47(4): 622-632. | |
28 | Zhang H, Wang P H. Determination of relative water content in plant leaves in vivo. Plant Physiology Communications, 1991(3): 217-219. |
张慧, 汪沛洪. 叶片相对含水量的活体测定. 植物生理学报, 1991(3): 217-219. | |
29 | Kong W W, Liu F, Zhang C, et al. Non-destructive determination of malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Scientific Reports, 2016, 6(1): 35393. |
30 | Székely G, Abrahám E, Cséplo A, et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. the Plant Journal, 2008, 53(1): 11-28. |
31 | Jiang H Y, Teng K, Tan P H, et al. Heterogeneous expression of a novel Zoysia japonica C2H2 zinc finger protein gene, ZjZFN1, caused drought sensitivity in Arabidopsis. Acta Prataculturae Sinica, 2019, 28(4): 129-138. |
姜红岩, 滕珂, 檀鹏辉, 等. 日本结缕草 ZjZFN1 基因对拟南芥的转化及其耐旱性分析. 草业学报, 2019, 28(4): 129-138. | |
32 | Pruthvi V, Narasimhan R, Nataraja K N, et al. Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One, 9(12): e111152. |
33 | Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. the Plant Journal, 2007, 50(1): 54-69. |
[1] | Di ZHANG, Li-fei REN, Guang-bin LIU, Fu-qing LUO, Wen-hao ZHANG, Tian-zuo WANG. Comparative metabolite profiling of alfalfa seeds dried at different temperatures [J]. Acta Prataculturae Sinica, 2021, 30(3): 158-166. |
[2] | Kai-qiang LIU, Wen-hui LIU, Zhi-feng JIA, Guo-ling LIANG, Xiang MA. Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa cv. Qingyan No.1 [J]. Acta Prataculturae Sinica, 2021, 30(3): 177-188. |
[3] | Bai-ping SHA, Ying-zhong XIE, Xue-qin GAO, Wei CAI, Bing-zhe FU. Effects of coupling of drip irrigation water and fertilizer on yield and quality of alfalfa in the yellow river irrigation district [J]. Acta Prataculturae Sinica, 2021, 30(2): 102-114. |
[4] | Shuang LIU, Fu-ping HUI. Distribution of alfalfa in the Ming and Qing Dynasties and the underlying driving factors [J]. Acta Prataculturae Sinica, 2021, 30(2): 178-189. |
[5] | Dong LI, Hong-tao SHEN, Yan-fang WANG, Yue-hua WANG, Li-jun WANG, Shi-min ZHAO, Ling LIU. Effects of exogenous melatonin on photosynthetic carbon assimilation and endogenous hormones in tobacco seedlings under drought stress [J]. Acta Prataculturae Sinica, 2021, 30(1): 130-139. |
[6] | Zhen-song LI, Li-qiang WAN, Shuo LI, Xiang-lin LI. Response of alfalfa root architecture and physiological characteristics to drought and rehydration [J]. Acta Prataculturae Sinica, 2021, 30(1): 189-196. |
[7] | WU Yong, LIU Xiao-jing, LIN Fang, TONG Chang-chun. A data envelopment analysis study of alfalfa fertilization responses and economic return in the desert irrigation area of Hexi [J]. Acta Prataculturae Sinica, 2020, 29(9): 94-105. |
[8] | XING Yi-mei, DONG Li, ZHAN Li-feng, CAI Hua, YANG Sheng-qiu, SUN Na. Effect of mixed inoculation of Glomus mosseae and Sinorhizobium melilotion alkali resistance of alfalfa [J]. Acta Prataculturae Sinica, 2020, 29(9): 136-145. |
[9] | QIN Feng-fei, LI Zhi-hua, LIU Xin-bao, QU Hui, PINGCUO Zhuo-ma, LUOSONG Qun-cuo, SU Meng-han. Effects of exogenous 2, 4-epibrassinolide on the growth and photosynthesis of alfalfa under high temperature and low light stress in summer [J]. Acta Prataculturae Sinica, 2020, 29(9): 146-160. |
[10] | TONG Chang-chun, LIU Xiao-jing, LIN Fang, YU Tie-feng. Yield effect of optimisation of photosynthetic characteristics of alfalfa through balanced fertilization [J]. Acta Prataculturae Sinica, 2020, 29(8): 70-80. |
[11] | LU Jiao-yun, XIONG Jun-bo, ZHANG He-shan, TIAN Hong, YANG Hui-min, LIU Yang. Effects of water stress on yield, quality and trace element composition of alfalfa [J]. Acta Prataculturae Sinica, 2020, 29(8): 126-133. |
[12] | ZENG Ling-shuang, LI Pei-ying, SUN Xiao-fan, SUN Zong-jiu. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang province [J]. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
[13] | ZHANG Yu-jun, SHANG Yi-shun, WANG Pu-chang, DING Lei-lei, ZHANG Wen, ZOU Chao. Effects of super absorbent polymers on growth and physiological characteristics of Sophora davidii vs. Panjiang seedlings under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(7): 90-98. |
[14] | CAI Lu, WANG Lin-lin, LUO Zhu-zhu, LI Ling-ling, NIU Yi-ning, CAI Li-qun, XIE Jun-hong. Meta-analysis of alfalfa yield and WUE response to growing ages in China [J]. Acta Prataculturae Sinica, 2020, 29(6): 27-38. |
[15] | ZHANG Li-li, SHI Min, LI Yan-zhong. Effect of anthracnose infection on alfalfa yield and quality in the Shaerqin area [J]. Acta Prataculturae Sinica, 2020, 29(6): 117-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||