Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (1): 195-204.DOI: 10.11686/cyxb2021265
Rui-zhi XU(), Xiao-juan WU, Hui-min YANG()
Received:
2021-07-05
Revised:
2021-09-22
Online:
2021-12-01
Published:
2021-12-01
Contact:
Hui-min YANG
Rui-zhi XU, Xiao-juan WU, Hui-min YANG. Effect of topdressing after cutting on alfalfa growth and production[J]. Acta Prataculturae Sinica, 2022, 31(1): 195-204.
土层 Soil layer (cm) | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) |
---|---|---|---|---|---|---|
0~10 | 8.48 | 12.77 | 0.81 | 30.47 | 1.96 | 11.44 |
10~20 | 8.45 | 11.79 | 0.76 | 30.00 | 1.39 | 10.40 |
20~30 | 8.51 | 11.25 | 0.75 | 31.06 | 1.53 | 8.22 |
30~40 | 8.57 | 9.84 | 0.73 | 26.37 | 1.15 | 8.16 |
40~60 | 8.56 | 8.40 | 0.72 | 26.18 | 1.23 | 7.81 |
Table 1 Characteristics of key nutrients in 0-60 cm soil layer
土层 Soil layer (cm) | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) |
---|---|---|---|---|---|---|
0~10 | 8.48 | 12.77 | 0.81 | 30.47 | 1.96 | 11.44 |
10~20 | 8.45 | 11.79 | 0.76 | 30.00 | 1.39 | 10.40 |
20~30 | 8.51 | 11.25 | 0.75 | 31.06 | 1.53 | 8.22 |
30~40 | 8.57 | 9.84 | 0.73 | 26.37 | 1.15 | 8.16 |
40~60 | 8.56 | 8.40 | 0.72 | 26.18 | 1.23 | 7.81 |
处理Treatment | N | P |
---|---|---|
N0P0 | 0 | 0 |
N0P30 | 0 | 30 |
N25P0 | 25 | 0 |
N0P60 | 0 | 60 |
N50P0 | 50 | 0 |
N25P30 | 25 | 30 |
N25P60 | 25 | 60 |
N50P30 | 50 | 30 |
N50P60 | 50 | 60 |
Table 2 Design for treatments (kg·hm-2)
处理Treatment | N | P |
---|---|---|
N0P0 | 0 | 0 |
N0P30 | 0 | 30 |
N25P0 | 25 | 0 |
N0P60 | 0 | 60 |
N50P0 | 50 | 0 |
N25P30 | 25 | 30 |
N25P60 | 25 | 60 |
N50P30 | 50 | 30 |
N50P60 | 50 | 60 |
因素 Factor | P值P value | |
---|---|---|
株高Plant height | 茎叶比Stem leaf ratio | |
N | 0.108 | 0.036 |
P | 0.009 | 0.150 |
T | 0.003 | 0.063 |
N×P | 0.001 | 0.059 |
N×T | 0.851 | 0.202 |
P×T | 0.944 | 0.210 |
N×P×T | 0.069 | 0.003 |
Table 3 Effect of topdressing combination and time on plant height and stem leaf ratio of alfalfa at the second cut
因素 Factor | P值P value | |
---|---|---|
株高Plant height | 茎叶比Stem leaf ratio | |
N | 0.108 | 0.036 |
P | 0.009 | 0.150 |
T | 0.003 | 0.063 |
N×P | 0.001 | 0.059 |
N×T | 0.851 | 0.202 |
P×T | 0.944 | 0.210 |
N×P×T | 0.069 | 0.003 |
处理Treatment | 茎叶比Stem leaf ratio | 处理Treatment | 茎叶比Stem leaf ratio |
---|---|---|---|
T0N0P0 | 1.11±0.05abc | T1N0P0 | 1.11±0.05abc |
T0N0P30 | 0.94±0.06cde | T1N0P30 | 0.89±0.07e |
T0N0P60 | 1.06±0.02abcde | T1N0P60 | 1.03±0.06abcde |
T0N25P0 | 1.02±0.06abcde | T1N25P0 | 1.00±0.03bcde |
T0N25P30 | 1.06±0.06abcde | T1N25P30 | 1.01±0.03bcde |
T0N25P60 | 1.10±0.08abcd | T1N25P60 | 0.96±0.02bcde |
T0N50P0 | 0.94±0.06cde | T1N50P0 | 0.90±0.05e |
T0N50P30 | 1.19±0.04a | T1N50P30 | 0.89±0.01e |
T0N50P60 | 0.93±0.09de | T1N50P60 | 1.11±0.05abc |
Table 4 Stem leaf ratio of alfalfa at the second cut under different treatments
处理Treatment | 茎叶比Stem leaf ratio | 处理Treatment | 茎叶比Stem leaf ratio |
---|---|---|---|
T0N0P0 | 1.11±0.05abc | T1N0P0 | 1.11±0.05abc |
T0N0P30 | 0.94±0.06cde | T1N0P30 | 0.89±0.07e |
T0N0P60 | 1.06±0.02abcde | T1N0P60 | 1.03±0.06abcde |
T0N25P0 | 1.02±0.06abcde | T1N25P0 | 1.00±0.03bcde |
T0N25P30 | 1.06±0.06abcde | T1N25P30 | 1.01±0.03bcde |
T0N25P60 | 1.10±0.08abcd | T1N25P60 | 0.96±0.02bcde |
T0N50P0 | 0.94±0.06cde | T1N50P0 | 0.90±0.05e |
T0N50P30 | 1.19±0.04a | T1N50P30 | 0.89±0.01e |
T0N50P60 | 0.93±0.09de | T1N50P60 | 1.11±0.05abc |
因素 Factor | P值P value | ||||
---|---|---|---|---|---|
牧草产量Forage yield | 粗蛋白产量CP yield | 酸性洗涤纤维含量ADF content | 中性洗涤纤维含量NDF content | 相对饲用价值RFV | |
N | <0.001 | <0.001 | 0.159 | 0.418 | 0.247 |
P | 0.020 | 0.004 | 0.347 | 0.160 | 0.056 |
T | 0.016 | 0.002 | 0.457 | 0.905 | 0.869 |
N×P | 0.030 | 0.008 | 0.732 | 0.773 | 0.477 |
N×T | 0.066 | 0.011 | 0.091 | 0.387 | 0.163 |
P×T | 0.159 | 0.252 | 0.216 | 0.785 | 0.526 |
N×P×T | 0.030 | <0.001 | 0.051 | 0.328 | 0.073 |
Table 5 Effects of topdressing combination and time on forage yield, CP yield, ADF, NDF content and RFV of alfalfa at the second cut
因素 Factor | P值P value | ||||
---|---|---|---|---|---|
牧草产量Forage yield | 粗蛋白产量CP yield | 酸性洗涤纤维含量ADF content | 中性洗涤纤维含量NDF content | 相对饲用价值RFV | |
N | <0.001 | <0.001 | 0.159 | 0.418 | 0.247 |
P | 0.020 | 0.004 | 0.347 | 0.160 | 0.056 |
T | 0.016 | 0.002 | 0.457 | 0.905 | 0.869 |
N×P | 0.030 | 0.008 | 0.732 | 0.773 | 0.477 |
N×T | 0.066 | 0.011 | 0.091 | 0.387 | 0.163 |
P×T | 0.159 | 0.252 | 0.216 | 0.785 | 0.526 |
N×P×T | 0.030 | <0.001 | 0.051 | 0.328 | 0.073 |
处理 Treatment | 酸性洗涤纤维含量 ADF content (%) | 中性洗涤纤维含量 NDF content (%) | 相对饲用价值RFV | 处理 Treatment | 酸性洗涤纤维含量 ADF content (%) | 中性洗涤纤维含量 NDF content (%) | 相对饲用价值RFV |
---|---|---|---|---|---|---|---|
T0N0P0 | 21.9±0.7a | 35.1±0.8a | 187±5c | T1N0P0 | 21.9±0.7a | 35.1±0.8a | 187±5c |
T0N0P30 | 21.0±1.1a | 34.1±0.8a | 198±6abc | T1N0P30 | 20.2±1.2a | 33.5±2.8a | 206±15abc |
T0N0P60 | 19.2±0.7a | 30.1±2.6a | 215±17abc | T1N0P60 | 22.0±0.5a | 36.7±0.8a | 182±3c |
T0N25P0 | 21.2±1.0a | 35.0±0.9a | 193±7abc | T1N25P0 | 19.3±1.2a | 33.7±2.3a | 205±12abc |
T0N25P30 | 20.0±0.8a | 31.9±0.9a | 215±6abc | T1N25P30 | 18.7±1.1a | 31.0±0.8a | 224±8a |
T0N25P60 | 21.3±0.4a | 36.1±2.2a | 190±11bc | T1N25P60 | 18.4±0.3a | 33.5±0.2a | 207±1abc |
T0N50P0 | 21.8±1.4a | 34.0±2.3a | 198±10abc | T1N50P0 | 19.0±1.6a | 33.3±2.7a | 209±13abc |
T0N50P30 | 18.1±0.5a | 31.2±0.8a | 223±7ab | T1N50P30 | 21.9±1.8a | 35.1±2.5a | 192±12abc |
T0N50P60 | 21.5±0.9a | 34.8±1.7a | 194±11abc | T1N50P60 | 20.9±1.9a | 33.3±1.9a | 204±8abc |
Table 6 ADF content, NDF content and RFV of alfalfa at the second cut under different treatments
处理 Treatment | 酸性洗涤纤维含量 ADF content (%) | 中性洗涤纤维含量 NDF content (%) | 相对饲用价值RFV | 处理 Treatment | 酸性洗涤纤维含量 ADF content (%) | 中性洗涤纤维含量 NDF content (%) | 相对饲用价值RFV |
---|---|---|---|---|---|---|---|
T0N0P0 | 21.9±0.7a | 35.1±0.8a | 187±5c | T1N0P0 | 21.9±0.7a | 35.1±0.8a | 187±5c |
T0N0P30 | 21.0±1.1a | 34.1±0.8a | 198±6abc | T1N0P30 | 20.2±1.2a | 33.5±2.8a | 206±15abc |
T0N0P60 | 19.2±0.7a | 30.1±2.6a | 215±17abc | T1N0P60 | 22.0±0.5a | 36.7±0.8a | 182±3c |
T0N25P0 | 21.2±1.0a | 35.0±0.9a | 193±7abc | T1N25P0 | 19.3±1.2a | 33.7±2.3a | 205±12abc |
T0N25P30 | 20.0±0.8a | 31.9±0.9a | 215±6abc | T1N25P30 | 18.7±1.1a | 31.0±0.8a | 224±8a |
T0N25P60 | 21.3±0.4a | 36.1±2.2a | 190±11bc | T1N25P60 | 18.4±0.3a | 33.5±0.2a | 207±1abc |
T0N50P0 | 21.8±1.4a | 34.0±2.3a | 198±10abc | T1N50P0 | 19.0±1.6a | 33.3±2.7a | 209±13abc |
T0N50P30 | 18.1±0.5a | 31.2±0.8a | 223±7ab | T1N50P30 | 21.9±1.8a | 35.1±2.5a | 192±12abc |
T0N50P60 | 21.5±0.9a | 34.8±1.7a | 194±11abc | T1N50P60 | 20.9±1.9a | 33.3±1.9a | 204±8abc |
因素 Factor | 根长密度 Root length density | 根表面积 Root surface area | 根体积 Root volume | 根生物量 Root biomass |
---|---|---|---|---|
N | 0.233 | 0.040 | 0.050 | 0.048 |
P | 0.030 | 0.556 | 0.002 | 0.024 |
T | 0.075 | 0.779 | 0.010 | 0.684 |
N×P | 0.032 | 0.042 | <0.001 | 0.004 |
N×T | 0.551 | 0.771 | 0.567 | 0.021 |
P×T | 0.159 | 0.924 | 0.531 | 0.139 |
N×P×T | 0.545 | 0.253 | 0.131 | 0.210 |
Table 7 Effects (P value) of fertilization and topdressing time on root length, root surface area, root volume and root biomass of alfalfa at the second cut
因素 Factor | 根长密度 Root length density | 根表面积 Root surface area | 根体积 Root volume | 根生物量 Root biomass |
---|---|---|---|---|
N | 0.233 | 0.040 | 0.050 | 0.048 |
P | 0.030 | 0.556 | 0.002 | 0.024 |
T | 0.075 | 0.779 | 0.010 | 0.684 |
N×P | 0.032 | 0.042 | <0.001 | 0.004 |
N×T | 0.551 | 0.771 | 0.567 | 0.021 |
P×T | 0.159 | 0.924 | 0.531 | 0.139 |
N×P×T | 0.545 | 0.253 | 0.131 | 0.210 |
处理 Treatment | 根长密度 Root length density (mm·cm-3) | 根表面积 Root surface area (mm2·cm-3) | 根体积 Root volume (mm3·cm-3) | 处理 Treatment | 根长密度 Root length density (mm·cm-3) | 根表面积 Root surface area (mm2·cm-3) | 根体积 Root volume (mm3·cm-3) |
---|---|---|---|---|---|---|---|
T0N0P0 | 2.66±0.27a | 4.95±0.67b | 1.28±0.15e | T1N0P0 | 2.66±0.27a | 4.95±0.67b | 1.28±0.15e |
T0N0P30 | 1.83±0.15d | 5.34±0.88b | 1.31±0.16e | T1N0P30 | 2.02±0.06bcd | 5.03±0.43b | 1.54±0.10cde |
T0N0P60 | 2.36±0.12abcd | 5.80±0.61ab | 1.46±0.27de | T1N0P60 | 1.88±0.11cd | 6.76±0.51ab | 2.04±0.02ab |
T0N25P0 | 2.49±0.22abc | 5.81±0.94ab | 1.49±0.09cde | T1N25P0 | 2.14±0.17abcd | 6.87±0.57ab | 1.74±0.09abcde |
T0N25P30 | 2.27±0.26abcd | 7.75±0.25a | 1.93±0.12abc | T1N25P30 | 2.10±0.26abcd | 6.78±0.32ab | 2.15±0.03a |
T0N25P60 | 2.49±0.23abc | 6.05±0.76ab | 1.47±0.19de | T1N25P60 | 2.07±0.27abcd | 5.00±0.41b | 1.32±0.07e |
T0N50P0 | 2.57±0.20ab | 6.56±0.36ab | 1.40±0.20de | T1N50P0 | 2.09±0.07abcd | 5.76±0.40ab | 1.37±0.14e |
T0N50P30 | 2.17±0.12abcd | 5.79±0.99ab | 1.47±0.16de | T1N50P30 | 2.41±0.25abcd | 6.53±0.82ab | 1.62±0.18bcde |
T0N50P60 | 2.64±0.34ab | 6.84±0.73ab | 1.81±0.19abcd | T1N50P60 | 2.59±0.15ab | 6.41±0.88ab | 2.12±0.08a |
Table 8 Root length, root surface area and root volume of alfalfa at the second cut under different treatments
处理 Treatment | 根长密度 Root length density (mm·cm-3) | 根表面积 Root surface area (mm2·cm-3) | 根体积 Root volume (mm3·cm-3) | 处理 Treatment | 根长密度 Root length density (mm·cm-3) | 根表面积 Root surface area (mm2·cm-3) | 根体积 Root volume (mm3·cm-3) |
---|---|---|---|---|---|---|---|
T0N0P0 | 2.66±0.27a | 4.95±0.67b | 1.28±0.15e | T1N0P0 | 2.66±0.27a | 4.95±0.67b | 1.28±0.15e |
T0N0P30 | 1.83±0.15d | 5.34±0.88b | 1.31±0.16e | T1N0P30 | 2.02±0.06bcd | 5.03±0.43b | 1.54±0.10cde |
T0N0P60 | 2.36±0.12abcd | 5.80±0.61ab | 1.46±0.27de | T1N0P60 | 1.88±0.11cd | 6.76±0.51ab | 2.04±0.02ab |
T0N25P0 | 2.49±0.22abc | 5.81±0.94ab | 1.49±0.09cde | T1N25P0 | 2.14±0.17abcd | 6.87±0.57ab | 1.74±0.09abcde |
T0N25P30 | 2.27±0.26abcd | 7.75±0.25a | 1.93±0.12abc | T1N25P30 | 2.10±0.26abcd | 6.78±0.32ab | 2.15±0.03a |
T0N25P60 | 2.49±0.23abc | 6.05±0.76ab | 1.47±0.19de | T1N25P60 | 2.07±0.27abcd | 5.00±0.41b | 1.32±0.07e |
T0N50P0 | 2.57±0.20ab | 6.56±0.36ab | 1.40±0.20de | T1N50P0 | 2.09±0.07abcd | 5.76±0.40ab | 1.37±0.14e |
T0N50P30 | 2.17±0.12abcd | 5.79±0.99ab | 1.47±0.16de | T1N50P30 | 2.41±0.25abcd | 6.53±0.82ab | 1.62±0.18bcde |
T0N50P60 | 2.64±0.34ab | 6.84±0.73ab | 1.81±0.19abcd | T1N50P60 | 2.59±0.15ab | 6.41±0.88ab | 2.12±0.08a |
1 | Farissi M, Ghoulam C, Bouizgaren A. The effect of salinity on yield and forage quality of alfalfa populations in the Marrakech region (Morocco). Fourrages, 2014, 2014(219): 271-275. |
2 | Yost M A, Russelle M P, Coulter J A, et al. Alfalfa stand length and subsequent crop patterns in the upper Midwestern United States. Agronomy Journal, 2014, 106(5): 1697-1708. |
3 | Olmstead J, Brummer E C. Benefits and barriers to perennial forage crops in Iowa corn and soybean rotations. Renewable Agriculture & Food Systems, 2008, 23(2): 97-107. |
4 | Gulnazarali, Tao H N, Wang Z K, et al. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM. Acta Prataculturae Sinica, 2021, 30(7): 22-33. |
古丽娜扎尔·艾力, 陶海宁, 王自奎, 等. 基于APSIM模型的黄土旱塬区苜蓿-小麦轮作系统深层土壤水分及水分利用效率研究. 草业学报, 2021, 30(7): 22-33. | |
5 | Lu J Y. Effects of N and P fertilizations on leaf nutrient reabsorption of alfalfa at different growth stages in the Loess Plateau. Lanzhou: Lanzhou University, 2019. |
陆姣云. 施氮磷肥对黄土高原不同生长阶段紫花苜蓿叶片养分重吸收的影响. 兰州: 兰州大学, 2019. | |
6 | Yang H M, Wang Z N, Ji C R. Research progress in the dynamics of carbon and nitrogen in forages after cutting and grazing. Chinese Journal of Grassland, 2013, 35(4): 102-109, 120. |
杨惠敏, 王振南, 吉春荣. 刈割和放牧后牧草碳氮动态研究进展. 中国草地学报, 2013, 35(4): 102-109, 120. | |
7 | Bouton J H. Breeding lucerne for persistence. Crop and Pasture Science, 2012, 63(2): 95-106. |
8 | Chen P, Shen Z R, Chi H F, et al. Effects of different fertilization on output and plant height of alfalfa. Crops, 2013(1): 91-94. |
陈萍, 沈振荣, 迟海峰, 等.不同施肥处理对紫花苜蓿产量和株高的影响. 作物杂志, 2013(1): 91-94. | |
9 | Chen X L, Pan J, Chen L J. et al. Effects of fertilization on hay yield and quality of alfalfa on the Loess Plateau. Pratacultural Science, 2019, 36(12): 3145-3154. |
陈香来, 潘佳, 陈利军, 等. 施肥对黄土高原紫花苜蓿产量及品质的影响. 草业科学, 2019, 36(12): 3145-3154. | |
10 | Wang D. Effects of nitrogen application on alfalfa production performance and soil nitrogen content. Beijing: Chinese Academy of Agricultural Sciences, 2013. |
王丹. 施氮对紫花苜蓿生产性能及土壤氮含量的影响. 北京: 中国农业科学院, 2013. | |
11 | Jenkins M B, Bottomley P J. Seasonal response of uninoculated alfalfa to N fertilizer: Soil N, nodule turnover, and symbiotic effectiveness of Rhizobium meliloti. Agronomy Journal, 1984, 76(6): 959-963. |
12 | Daliparthy J, Herbert S J, Veneman P, et al. Herbage production, weed occurrence, and economic risk from dairy manure applications to alfalfa. Journal of Production Agriculture, 1995, 8(4): 495-501. |
13 | Lamb J, Barnes D K, Russelle M P, et al. Ineffectively and effectively nodulated alfalfas demonstrate biology nitrogen fixation continues with high nitrogen fertilization. Crop Science, 1995, 35(1): 153-157. |
14 | Wang Y, Cui G W, Yin H, et al. Effects of different fertilization schemes on alfalfa performance and nutritional quality. Pratacultural Science, 2019, 36(3): 793-803. |
王洋, 崔国文, 尹航, 等. 施肥对紫花苜蓿生产性能及营养品质的影响. 草业科学, 2019, 36(3): 793-803. | |
15 | Sun H R, Cao Y, Liu L, et al. Fertilization theory and technology of alfalfa. China Dairy Cattle, 2017, 8(328): 59-63. |
孙洪仁, 曹影, 刘琳, 等. 紫花苜蓿施肥的理论和技术. 中国奶牛, 2017, 8(328): 59-63. | |
16 | Xiao Z X, Wang Y, Liu G F, et al. Effects of fertilizing time in early spring on alfalfa (Medicago sativa) production performance and nutritional quality in Mollisol area in cold region. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677. |
肖知新, 王洋, 刘国富, 等. 寒地黑土区春季施肥期对紫花苜蓿生产性能及营养品质的影响. 中国农业科学, 2020, 53(13): 2668-2677. | |
17 | Comas L H, Eissenstat D M, Lakso A N. Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytologist, 2000, 147(1): 171-178. |
18 | Ma X H. The affection of fertilization on alfalfa and analyzing of economy. Urumqi: Xinjiang Agricultural University, 2005. |
马孝慧. 施肥对苜蓿产量与品质的影响及其经济效益分析. 乌鲁木齐: 新疆农业大学, 2005. | |
19 | Zhang J. Study on the effects of fertilization between alfalfa characteristics and soil fertility. Xianyang: Northwest A&F University, 2007. |
张杰. 施肥对紫花苜蓿生长特性和土壤肥力的影响研究. 咸阳: 西北农林科技大学, 2007. | |
20 | Li X Y, Meng K, Xiao Y Z, et al. The effect of fertilizing with formula on stem leaf ratio and ratio of dry-and-wet of alfalfa. Grassland and Prataculture, 2015, 27(4): 32-39. |
李星月, 孟凯, 肖燕子, 等. 配方施肥对苜蓿茎叶比和鲜干比的影响. 草原与草业, 2015, 27(4): 32-39. | |
21 | Pan L, Wei Z W, Wu Z N, et al. Effects of fertilizers and sowing rates on growth characteristics and forage yields of alfalfa in Yangzhou region. Acta Agrestia Sinica, 2012, 20(6): 1099-1104. |
潘玲, 魏臻武, 武自念, 等. 施肥和播种量对扬州地区苜蓿生长特性和产草量的影响. 草地学报, 2012, 20(6): 1099-1104. | |
22 | Zhao L X. Effect of P application depth and P application level on production performance and C, N, P stoichiometric characteristics of alfalfa leaves. Tongliao: Inner Mongolia University for Nationalities, 2020. |
赵力兴. 施磷深度与施磷水平对紫花苜蓿生产性能和叶片C、N、P化学计量特征的影响. 通辽: 内蒙古民族大学, 2020. | |
23 | Singh D K, Sale P, Routley R R. Increasing phosphorus supply in subsurface soil in northern Australia: Rationale for deep placement and the effects with various crops. Plant and Soil, 2005, 269(1/2): 35-44. |
24 | Zhang T J, Zhao Z X, Long R C, et al. Study on effects of N, P and K fertilizers on alfalfa hay and recommended fertilizer rate in Huanghuaihai area. Acta Agrestia Sinica, 2019, 27(1): 243-249. |
张铁军, 赵忠祥, 龙瑞才, 等. 黄淮海地区紫花苜蓿氮磷钾肥料效应与推荐施肥量研究. 草地学报, 2019, 27(1): 243-249. | |
25 | Zhang Q B, Liu J Y, Liu X S, et al. Optimizing the nutritional quality and phosphorus use efficiency of alfalfa under drip irrigation with nitrogen and phosphorus fertilization. Agronomy Journal, 2020, 112(4): 3129-3139. |
26 | Zhang L, Liang W, Chen Y H, et al. Yield and forage nutritive quality improvement of alfalfa by nitrogen. Journal of Jilin Agricultural Sciences, 2014, 39(5): 62-66, 79. |
张磊, 梁卫, 陈一昊, 等. 施氮肥对紫花苜蓿产量及饲用营养品质的影响. 吉林农业科学, 2014, 39(5): 62-66, 79. | |
27 | Zhang D S, Li H B, Shen J B. Strategies for roots foraging and acquiring soil nutrient in high efficiency under intensive cropping systems. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1547-1555. |
张德闪, 李洪波, 申建波. 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017, 23(6): 1547-1555. | |
28 | Ma H, Meng J, Li N. Responses of root morphological and physiological characteristics of different alfalfa genotypes to phosphorus levels. Pratacultural Science, 2021, 38(2): 231-238. |
马红, 孟捷, 李宁. 不同品种紫花苜蓿根系形态及生理特征对磷水平的响应. 草业科学, 2021, 38(2): 231-238. | |
29 | Kang J H, Liang X Z, Zheng M N, et al. Effects of exogenous nitrogen forms on the root of alfalfa. Journal of Shanxi Agricultural Sciences, 2021, 49(4): 467-471. |
康佳惠, 梁秀芝, 郑敏娜, 等. 不同外源氮素形态对紫花苜蓿根系的影响. 山西农业科学, 2021, 49(4): 467-471. | |
30 | Carroll P V, Claudia U S, Deborah L A. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157(3): 423-447. |
[1] | Ying ZHAO, Xia-qing XIN, Xiao-hong WEI. Effects of nitric oxide on nitrogen metabolism in alfalfa under drought stress [J]. Acta Prataculturae Sinica, 2021, 30(9): 86-96. |
[2] | Qian-qian ZHOU, Ya-jian ZHANG, Jing ZHANG, Tu-tong YIN, Xia-fang SHENG, Lin-yan HE. Isolation of a beneficial hydrogen sulfide-producing bacterial strain that reduces lead uptake by Medicago sativa and aids remediation of Pb-contaminated soil [J]. Acta Prataculturae Sinica, 2021, 30(7): 44-52. |
[3] | Xiao-fang ZHANG, Xiao-hong WEI, Fang LIU, Xue-mei ZHU. Endogenous hormone responses to nitric oxide in alfalfa seedlings under PEG stress [J]. Acta Prataculturae Sinica, 2021, 30(4): 160-169. |
[4] | Xin MA, Zhu-zhu LUO, Yao-quan ZHANG, Jia-he LIU, Yi-ning NIU, Li-qun CAI. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 54-67. |
[5] | Xiao-jing LIU, Ya-jiao ZHAO, Feng HAO, Chang-chun TONG. Detection and characterization of nitrogen efficiency in alfalfa [J]. Acta Prataculturae Sinica, 2021, 30(12): 90-102. |
[6] | Qian MA, Qi YAN, Zheng-she ZHANG, Fan WU, Ji-yu ZHANG. Identification, evolution and expression analysis of the CCoAOMT family genes in Medicago sativa [J]. Acta Prataculturae Sinica, 2021, 30(11): 144-156. |
[7] | Ru-yue WANG, Wu-wu WEN, En-hua ZHAO, Peng ZHOU, Yuan AN. Cloning and salt-tolerance analysis of MsWRKY11 in alfalfa [J]. Acta Prataculturae Sinica, 2021, 30(11): 157-169. |
[8] | ZHAO Meng, WEI Xiao-Hong. Effects of nitric oxide on Medicago sativa seed germination under imbibitional chilling [J]. Acta Prataculturae Sinica, 2015, 24(4): 87-94. |
[9] | GE Jian, YANG Cui-Jun, YANG Zhi-Min, BAI Xue-Mei, ZHAO Hai-Xiang, LIU Gui-He. Quality of mixed naked oats (Avena nuda) and alfalfa (Medicago sativa) silage [J]. Acta Prataculturae Sinica, 2015, 24(4): 104-113. |
[10] | WEN Zhao-Hui, NAN Zhi-Biao. Detection of pathogenic organisms in Medicago sativa in Zhangye, Gansu Province [J]. Acta Prataculturae Sinica, 2015, 24(4): 121-126. |
[11] | BAI Yu, GAO Xingke, WANG Yechen, CHEN Zhongchao, SUN Juan, WAN Fanghao, YUAN Zhonglin. Field comparison of the resistance of 33 alfalfa varieties to thrips [J]. Acta Prataculturae Sinica, 2015, 24(3): 187-194. |
[12] | LIU Dongxia, LIU Guihe, YANG Zhimin. The effects of planting and harvesting factors on hay yield and stem-leaf ratio of Medicago sativa [J]. Acta Prataculturae Sinica, 2015, 24(3): 48-57. |
[13] | PENG Lan-qing, LI Xin-yong, QI Xiao, YUE Yan-hong, FAN Shu-gao, LI Shu-cheng, WANG Yan-rong. The relationship of root traits with persistence and biomass in 10 alfalfa varieties [J]. Acta Prataculturae Sinica, 2014, 23(2): 147-153. |
[14] | XIA Zeng-run, DU Feng-feng, LI Si, ZHANG Ji-yu, LIU Yong, HUO Ya-xin, KONG Lin-fang. Construction of an EMS induced mutant library and identification of morphological characteristics in Medicago sativa [J]. Acta Prataculturae Sinica, 2014, 23(2): 215-222. |
[15] | ZHENG Lin-lin, WANG Jia, HE Long-mei, WANG Xue-feng, WANG Ying-chun. Over-expression vector construction and genetic transformation of a protein kinase NtCIPK2 from Nitraria tangutorum [J]. Acta Prataculturae Sinica, 2013, 22(6): 223-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||