Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (7): 44-52.DOI: 10.11686/cyxb2020265
Previous Articles Next Articles
Qian-qian ZHOU(), Ya-jian ZHANG, Jing ZHANG, Tu-tong YIN, Xia-fang SHENG, Lin-yan HE()
Received:
2020-06-08
Revised:
2020-07-06
Online:
2021-07-20
Published:
2021-06-03
Contact:
Lin-yan HE
Qian-qian ZHOU, Ya-jian ZHANG, Jing ZHANG, Tu-tong YIN, Xia-fang SHENG, Lin-yan HE. Isolation of a beneficial hydrogen sulfide-producing bacterial strain that reduces lead uptake by Medicago sativa and aids remediation of Pb-contaminated soil[J]. Acta Prataculturae Sinica, 2021, 30(7): 44-52.
菌株Strains | 吲哚乙酸IAA (mg·L-1) | 铁载体Siderophore | 脲酶Urease | Pb耐性Pb tolerance (mg·L-1) | Cd耐性Cd tolerance (mg·L-1) |
---|---|---|---|---|---|
Mr2 | 65.9 | ++ | - | 300 | 20 |
Mr3 | 4.1 | +++++ | + | 500 | 20 |
Mr11 | 23.8 | +++ | - | 500 | 10 |
Mr40 | 38.7 | +++++ | + | 400 | 30 |
Sar15 | 15.8 | ++ | + | 800 | 50 |
Table 1 Physiological characteristics of the isolated strains
菌株Strains | 吲哚乙酸IAA (mg·L-1) | 铁载体Siderophore | 脲酶Urease | Pb耐性Pb tolerance (mg·L-1) | Cd耐性Cd tolerance (mg·L-1) |
---|---|---|---|---|---|
Mr2 | 65.9 | ++ | - | 300 | 20 |
Mr3 | 4.1 | +++++ | + | 500 | 20 |
Mr11 | 23.8 | +++ | - | 500 | 10 |
Mr40 | 38.7 | +++++ | + | 400 | 30 |
Sar15 | 15.8 | ++ | + | 800 | 50 |
处理 Treatments | 干重 Dry weight (g·5 plant-1) | Pb含量 Pb content (mg·kg-1) | Pb 总量 Total Pb content (μg) | 转移系数 Translocation factor | 根富集系数 Bioconcentration factor | |||
---|---|---|---|---|---|---|---|---|
地上部Shoot | 根部Root | 地上部Shoot | 根部Root | 地上部Shoot | 根部Root | |||
对照Control | 1.2±0.10 | 0.4±0.05 | 8.7±0.70 | 13.0±0.10 | 10.7±0.20 | 5.2±0.90 | 0.66 | 0.033 |
活菌Sar15 Live Sar15 | 1.5±0.03* | 0.5±0.08** | 4.9±0.02*** | 7.2±0.10*** | 7.3±0.30*** | 3.6±0.30*** | 0.68 | 0.018*** |
灭活菌Sar15 Inactivation Sar15 | 1.3±0.03 | 0.4±0.03 | 8.4±0.80 | 12.0±0.30 | 10.5±0.90 | 5.3±0.50 | 0.70 | 0.032 |
Table 2 Effects of strain Sar15 on the dry weight, Pb content, total content, translocation factor and bioconcentration factor of M. sativa
处理 Treatments | 干重 Dry weight (g·5 plant-1) | Pb含量 Pb content (mg·kg-1) | Pb 总量 Total Pb content (μg) | 转移系数 Translocation factor | 根富集系数 Bioconcentration factor | |||
---|---|---|---|---|---|---|---|---|
地上部Shoot | 根部Root | 地上部Shoot | 根部Root | 地上部Shoot | 根部Root | |||
对照Control | 1.2±0.10 | 0.4±0.05 | 8.7±0.70 | 13.0±0.10 | 10.7±0.20 | 5.2±0.90 | 0.66 | 0.033 |
活菌Sar15 Live Sar15 | 1.5±0.03* | 0.5±0.08** | 4.9±0.02*** | 7.2±0.10*** | 7.3±0.30*** | 3.6±0.30*** | 0.68 | 0.018*** |
灭活菌Sar15 Inactivation Sar15 | 1.3±0.03 | 0.4±0.03 | 8.4±0.80 | 12.0±0.30 | 10.5±0.90 | 5.3±0.50 | 0.70 | 0.032 |
1 | He G X, Song J C, Wen Y J, et al. Effects of different rhizobium fertilizers on alfalfa productivity and soil fertility. Acta Prataculturae Sinica, 2020, 29(5): 109-120. |
何国兴, 宋建超, 温雅洁, 等. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响. 草业学报, 2020, 29(5): 109-120. | |
2 | Zhang H, Kou J T, Shi S L. Physiological and biochemical responses of Medicago sativa seed to cobalt stress. Acta Prataculturae Sinica, 2015, 24(9): 146-153. |
张虎, 寇江涛, 师尚礼. 紫花苜蓿种子萌发对钴胁迫的生理生化响应. 草业学报, 2015, 24(9): 146-153. | |
3 | Qiu L L, Fan X F, Xu S J, et al. The stress effect of heavy metal Pb on the growth and physiological and biochemical indexes of Medicago sativa seedlings. Gansu Science and Technology, 2013, 29(16): 148-151. |
邱丽莉, 范小峰, 许姝娟, 等. 重金属Pb对紫花苜蓿幼苗生长及生理生化指标的胁迫效应. 甘肃科技, 2013, 29(16): 148-151. | |
4 | Wei C Y, Chen T B. Hyperaccumulators and phytoremediation of heavy metal contaminated soil: A review of studies in China and abroad. Acta Ecologica Sinica, 2001, 21(7): 1196-1203. |
韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展. 生态学报, 2001, 21(7): 1196-1203. | |
5 | Han H, Wang Q, He L Y, et al. Increased biomass and reduced rapeseed Cd accumulation of oilseed rape in the presence of Cd-immobilizing and polyamine-producing bacteria. Journal of Hazardous Materials, 2018, 353: 280-289. |
6 | Peng H, Zhang Y, Palmer L D, et al. Hydrogen sulfide and reactive sulfur species impact proteome S-sulfhydration and global virulence regulation in Staphylococcus aureus. ACS Infectious Diseases, 2017(3): 744-755. |
7 | Huang Z Z, He K, Song Z X, et al. Alleviation of heavy metal and silver nanoparticle toxicity and enhancement of their removal by hydrogen sulfide in Phanerochaete chrysosporium. Chemosphere, 2019, 224: 554-561. |
8 | Jin Z P, Pei Y X. Physiological implications of hydrogen sulfide in plants: Pleasant exploration behind its unpleasant odour. Oxidative Medicine and Cellular Longevity, 2015, (2015-05-11). https://doi.org/10.1155/2015/397502. |
9 | Zhang H, Hu L Y, Hu K D, et al. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. Journal of Integrative Plant Biology, 2009, 50(12): 1518-1529. |
10 | Lin Y T, Li M Y, Cui W T, et al. Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation. Plant Growth Regulation, 2012, 31(4): 519-528. |
11 | Wang L, Wan R J, Shi Y H, et al. Hydrogen sulfide activates S-type anion channel via OST1 and Ca2+ modules. Molecular Plant, 2016, 9(3): 489-491. |
12 | Pei Y X. Gasotransmitter hydrogen sulfide in plants:Stinking to high heaven, but refreshing to fine life. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(7): 721-733. |
裴雁曦. 植物中的气体信号分子硫化氢: 无香而立,其臭如兰. 中国生物化学与分子生物学报, 2016, 32(7): 721-733. | |
13 | Cui W T, Chen H P, Zhu K K, et al. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo) glutathione and reactive oxygen species homeostases. PLoS One, 2014, 9(10): e109669. |
14 | Fang L C, Ju W L, Yang C L, et al. Application of signaling molecules in reducing metal accumulation in alfalfa and alleviating metal-induced phytotoxicity in Pb/Cd-contaminated soil. Ecotoxicology and Environmental Safety, 2019, 182, https://doi.org/10.1016/j.ecoenv.2019.109459. |
15 | Shatalin K, Shatalina E, Mironov A, et al. H2S: A universal defense against antibiotics in bacteria. Science, 2011, 334: 986-990. |
16 | Jiang C Y, Sheng X F, Qian M. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, 2008, 72(2): 157-164. |
17 | Rajkumar M, Nagendran R, Lee K J. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 2006, 62(5): 741-748. |
18 | Ignatius R K P, Yen S C, Kwong S W, et al. Isolation and characterization of urease-producing bacteria from tropical peat. Biocatalysis and Agricultural Biotechnology, 2018, 13: 168-175. |
19 | Li S J, Zhang T, Li J F, et al. Stabilization of Pb(II) accumulated in biomass through phosphate-pretreated pyrolysis at low temperatures. Journal of Hazardous Materials, 2017, 324: 464-471. |
20 | Qian F, Zhu X D, Liu Y C, et al. Influences of temperature and metal on subcritical hydrothermal liquefaction of hyperaccumulator: Implications for the recycling of hazardous hyperaccumulators. Environmental Science & Technology, 2018, 52(4): 2225-2234. |
21 | Guan S Y. Soil enzymes and their research methods. Beijing: Agricultural Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
22 | Dai H, Jia G. Effects of Se on the growth, tolerance, and antioxidative systems of three alfalfa cultivars. Environmental Science and Pollution Research, 2017, 24(17): 15196-15201. |
23 | Bonfranceschi B A, Flocco C G, Donati E R. Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment. Journal of Hazardous Materials, 2009, 165: 366-371. |
24 | Yun L, Larson S R, Jensen K B, et al. Quantitative trait loci (QTL) and candidate genes associated with trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals. Plant and Soil, 2015, 396: 277-296. |
25 | Ghada S, Mohamed I. Roles of hydrogen sulfide and cysteine in alleviation of nickel induced oxidative damages in wheat seedling. The Egyotian Journal of Experimental Biology, 2013, 9(1): 105-114. |
26 | Mostofa M G, Rahman A, Ansary M M U, et al. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Scientific Reports, 2015, 5: 14078. |
27 | Fang H, Jing T, Liu Z, et al. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. Cell Calcium, 2014, 56: 472-481. |
28 | Amooaghaie R, Zangene-Madar F, Enteshari S. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. Ecotoxicol Environment Safety, 2017, 139: 210-218. |
29 | Kaya C, Ashraf M, Akram N A. Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime. Environmental Science and Pollution Research, 2018, 25(13): 12612-12618. |
30 | Yan J, Xia L, Sheng X F, et al. Isolation of heavy metal-tolerant Sinorhizobium meliloti and the effect on copper uptake of alfalfa, Perennial ryegrass and Sorghum bicolor plants grown on copper-contaminated soil. Acta Prataculturae Sinica, 2019, 28(2): 102-111. |
严警, 夏丽, 盛下放, 等. 耐重金属苜蓿中华根瘤菌的筛选及其与能源植物联合富集铜的特性. 草业学报, 2019, 28(2): 102-111. | |
31 | Singh V K, Singh A K, Singh P P, et al. Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agriculture Ecosystems & Environment, 2018, 267: 129-140. |
32 | Cao Q H, Pu S P, Xu W H, et al. Advances in research on morphology and bioavailability of heavy metals in rhizosphere. Guangzhou Environmental Sciences, 2006(3): 1-4. |
曹秋华, 普绍苹, 徐卫红, 等. 根际重金属形态与生物有效性研究进展. 广州环境科学, 2006(3): 1-4. | |
33 | Huai J S, Shen Y. Study on the quality control of soil heavy metal morphology. Guangdong Chemical Industry, 2018, 45(12): 104-105. |
怀俊晟, 沈艳. 土壤重金属形态分析质量控制研究. 广东化工, 2018, 45(12): 104-105. | |
34 | Zhang Y L, Chen L J. Research advance in soil arylsulphatase. Chinese Journal of Soil Science, 2006(4): 792-798. |
张玉兰, 陈利军. 土壤芳基硫酸酯酶及其活性和农业措施影响. 土壤通报, 2006(4): 792-798. | |
35 | Treesubsuntorn C, Dhurakit P, Khaksar G, et al. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environmental Science and Pollution Research, 2018, 25(26): 25690-25701. |
[1] | Xiao-fang ZHANG, Xiao-hong WEI, Fang LIU, Xue-mei ZHU. Endogenous hormone responses to nitric oxide in alfalfa seedlings under PEG stress [J]. Acta Prataculturae Sinica, 2021, 30(4): 160-169. |
[2] | Xin MA, Zhu-zhu LUO, Yao-quan ZHANG, Jia-he LIU, Yi-ning NIU, Li-qun CAI. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 54-67. |
[3] | ZHAO Meng, WEI Xiao-Hong. Effects of nitric oxide on Medicago sativa seed germination under imbibitional chilling [J]. Acta Prataculturae Sinica, 2015, 24(4): 87-94. |
[4] | GE Jian, YANG Cui-Jun, YANG Zhi-Min, BAI Xue-Mei, ZHAO Hai-Xiang, LIU Gui-He. Quality of mixed naked oats (Avena nuda) and alfalfa (Medicago sativa) silage [J]. Acta Prataculturae Sinica, 2015, 24(4): 104-113. |
[5] | WEN Zhao-Hui, NAN Zhi-Biao. Detection of pathogenic organisms in Medicago sativa in Zhangye, Gansu Province [J]. Acta Prataculturae Sinica, 2015, 24(4): 121-126. |
[6] | BAI Yu, GAO Xingke, WANG Yechen, CHEN Zhongchao, SUN Juan, WAN Fanghao, YUAN Zhonglin. Field comparison of the resistance of 33 alfalfa varieties to thrips [J]. Acta Prataculturae Sinica, 2015, 24(3): 187-194. |
[7] | LIU Dongxia, LIU Guihe, YANG Zhimin. The effects of planting and harvesting factors on hay yield and stem-leaf ratio of Medicago sativa [J]. Acta Prataculturae Sinica, 2015, 24(3): 48-57. |
[8] | PENG Lan-qing, LI Xin-yong, QI Xiao, YUE Yan-hong, FAN Shu-gao, LI Shu-cheng, WANG Yan-rong. The relationship of root traits with persistence and biomass in 10 alfalfa varieties [J]. Acta Prataculturae Sinica, 2014, 23(2): 147-153. |
[9] | XIA Zeng-run, DU Feng-feng, LI Si, ZHANG Ji-yu, LIU Yong, HUO Ya-xin, KONG Lin-fang. Construction of an EMS induced mutant library and identification of morphological characteristics in Medicago sativa [J]. Acta Prataculturae Sinica, 2014, 23(2): 215-222. |
[10] | ZHENG Lin-lin, WANG Jia, HE Long-mei, WANG Xue-feng, WANG Ying-chun. Over-expression vector construction and genetic transformation of a protein kinase NtCIPK2 from Nitraria tangutorum [J]. Acta Prataculturae Sinica, 2013, 22(6): 223-229. |
[11] | JIN Juan, LIANG Jin, HE Chun-gui. Antibiosis of five alfalfa cultivars to two colour morphs of Acyrthosiphon pisum [J]. Acta Prataculturae Sinica, 2013, 22(6): 335-340. |
[12] | LIU Ying, CAI Hua, LIU Jing, BAI Xi, JI Wei, ZHU Yan-ming. Transformation of the GsCRCK gene into Medicago sativa cv. Nongjing No.1 and salt tolerance analysis in transgenic plants [J]. Acta Prataculturae Sinica, 2013, 22(2): 150-157. |
[13] | LIU Jing, CAI Hua, LIU Ying, ZHU Yan-ming, JI Wei, BAI Xi. A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage [J]. Acta Prataculturae Sinica, 2013, 22(2): 250-256. |
[14] | WANG Xiao-feng, LUO Zhen, LIU Xiao-yan, ZHU Dan, XIA Zhi-qiang, ZHOU Jian-hua, ZHANG Lei. Reparations of Ca2+ and P on N-fixation of alfalfa-rhizobia after acid aluminum stress [J]. Acta Prataculturae Sinica, 2012, 21(6): 108-116. |
[15] | CHEN Ting-ting,YANG Qing-chuan, ZHANG Xin-quan, KANG Jun-mei, DING Wang, ZHANG Tie-jun. Bioinformatics and expression analyses of ethylene response factor genes in Medicago [J]. Acta Prataculturae Sinica, 2012, 21(6): 166-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||