Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (3): 54-67.DOI: 10.11686/cyxb2020381
Previous Articles Next Articles
Xin MA1,3(), Zhu-zhu LUO1,2(), Yao-quan ZHANG1, Jia-he LIU1, Yi-ning NIU2, Li-qun CAI1,2
Received:
2020-08-04
Revised:
2020-09-27
Online:
2021-03-20
Published:
2021-03-09
Contact:
Zhu-zhu LUO
Xin MA, Zhu-zhu LUO, Yao-quan ZHANG, Jia-he LIU, Yi-ning NIU, Li-qun CAI. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau[J]. Acta Prataculturae Sinica, 2021, 30(3): 54-67.
处理 Treatments | 全氮 TN (g·kg-1) | 土壤有机碳 SOC (g·kg-1) | 全磷 TP (g·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 AP (mg·kg-1) | 速效钾 AK (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
农田Farmland | 0.84±0.08c | 8.28±0.70b | 0.86±0.06a | 32.98±8.49a | 6.67±0.42a | 201.27±9.26a | 8.30±0.08c |
L2003 | 1.18±0.00a | 10.06±0.05a | 0.72±0.01b | 12.97±0.72b | 0.98±0.16c | 200.77±20.01a | 8.64±0.02ab |
L2005 | 1.14±0.04ab | 9.94±0.20a | 0.77±0.01b | 10.85±0.10b | 2.87±0.59b | 233.90±8.96a | 8.75±0.01a |
L2012 | 1.02±0.03b | 8.24±0.14b | 0.76±0.01b | 8.12±0.45b | 3.21±0.15b | 214.86±11.77a | 8.57±0.02b |
Table 1 Chemical properties of different treatments
处理 Treatments | 全氮 TN (g·kg-1) | 土壤有机碳 SOC (g·kg-1) | 全磷 TP (g·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 AP (mg·kg-1) | 速效钾 AK (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
农田Farmland | 0.84±0.08c | 8.28±0.70b | 0.86±0.06a | 32.98±8.49a | 6.67±0.42a | 201.27±9.26a | 8.30±0.08c |
L2003 | 1.18±0.00a | 10.06±0.05a | 0.72±0.01b | 12.97±0.72b | 0.98±0.16c | 200.77±20.01a | 8.64±0.02ab |
L2005 | 1.14±0.04ab | 9.94±0.20a | 0.77±0.01b | 10.85±0.10b | 2.87±0.59b | 233.90±8.96a | 8.75±0.01a |
L2012 | 1.02±0.03b | 8.24±0.14b | 0.76±0.01b | 8.12±0.45b | 3.21±0.15b | 214.86±11.77a | 8.57±0.02b |
菌属 Bacteria genus | 农田Farmland | L2003 | L2005 | L2012 | 菌属 Bacteria genus | 农田Farmland | L2003 | L2005 | L2012 |
---|---|---|---|---|---|---|---|---|---|
norank_c__Acidobacteria | 9.37a | 8.95a | 8.89a | 8.43a | norank_f__MSB-1E8 | 1.10a | 1.15a | 1.16a | 1.22a |
norank_o__Gaiellales | 2.03a | 2.98a | 3.22a | 5.23a | norank_c__Gitt-GS-136 | 0.49b | 0.85ab | 0.89ab | 1.23a |
norank_c__Actinobacteria | 2.00a | 2.25a | 2.62a | 4.50a | norank_o__Acidimicrobiales | 0.72b | 1.21a | 1.22a | 1.25a |
norank_f__Gemmatimonadaceae | 3.45a | 3.27a | 3.16a | 4.15a | H16 | 1.28a | 0.80b | 0.78b | 0.95b |
unclassified_k__norank | 6.01a | 3.09b | 3.81b | 3.58b | 微枝形杆菌属 Microvirga | 1.45a | 1.79a | 1.97a | 1.47a |
Gaiella | 1.65a | 2.57a | 2.73a | 3.33a | 芽球菌属 Blastococcus | 0.99b | 2.08a | 1.73ab | 1.37ab |
norank_o__JG30-KF-CM45 | 3.59a | 3.59a | 3.46a | 2.60a | norank_c__P2-11E | 0.45a | 0.51a | 0.54a | 0.92a |
硝化螺菌属 Nitrospira | 1.81a | 1.52a | 1.61a | 2.34a | 类诺卡氏菌属 Nocardioides | 0.72b | 1.79a | 1.77a | 1.26ab |
norank_f__Nitrosomonadaceae | 1.94a | 1.74a | 1.78a | 2.30a | norank_f__288-2 | 0.85a | 0.87a | 0.72a | 1.11a |
芽孢杆菌属 Bacillus | 1.94a | 1.10a | 1.01a | 1.42a | norank_f__Elev-16S-1332 | 0.53b | 0.96a | 1.12a | 1.01a |
norank_f__Tepidisphaeraceae | 2.15a | 2.44a | 2.29a | 1.90a | norank_c__TK10 | 1.07a | 1.31a | 1.42a | 1.01a |
norank_f__Planctomycetaceae | 1.35b | 1.73ab | 1.94a | 1.72ab | RB41 | 1.15a | 1.25a | 0.93a | 1.17a |
norank_f__0319-6M6 | 1.04b | 1.73a | 1.59a | 1.77a | norank_p__Armatimonadetes | 1.15a | 0.97ab | 0.92ab | 0.78b |
Solirubrobacter | 1.03c | 2.02ab | 2.24a | 1.66b | Pir4_lineage | 1.32a | 0.40b | 0.45b | 0.50b |
norank_f__Anaerolineaceae | 2.01a | 1.00b | 1.11b | 1.42b | norank_f__Cytophagaceae | 1.26a | 0.62b | 0.59b | 0.33b |
norank_c__KD4-96 | 0.90b | 1.37a | 1.46a | 1.42a | 溶杆菌属 Lysobacter | 1.06a | 0.18b | 0.31b | 0.16b |
链霉菌属 Streptomyces | 1.50a | 1.61a | 1.21a | 1.11a | 其他Others | 39.26a | 37.67a | 37.62a | 33.88a |
假节杆菌属 Pseudarthrobacter | 1.36a | 2.61a | 1.73a | 1.49a |
Table 2 Microbial community composition at genus rank in different treatments (%)
菌属 Bacteria genus | 农田Farmland | L2003 | L2005 | L2012 | 菌属 Bacteria genus | 农田Farmland | L2003 | L2005 | L2012 |
---|---|---|---|---|---|---|---|---|---|
norank_c__Acidobacteria | 9.37a | 8.95a | 8.89a | 8.43a | norank_f__MSB-1E8 | 1.10a | 1.15a | 1.16a | 1.22a |
norank_o__Gaiellales | 2.03a | 2.98a | 3.22a | 5.23a | norank_c__Gitt-GS-136 | 0.49b | 0.85ab | 0.89ab | 1.23a |
norank_c__Actinobacteria | 2.00a | 2.25a | 2.62a | 4.50a | norank_o__Acidimicrobiales | 0.72b | 1.21a | 1.22a | 1.25a |
norank_f__Gemmatimonadaceae | 3.45a | 3.27a | 3.16a | 4.15a | H16 | 1.28a | 0.80b | 0.78b | 0.95b |
unclassified_k__norank | 6.01a | 3.09b | 3.81b | 3.58b | 微枝形杆菌属 Microvirga | 1.45a | 1.79a | 1.97a | 1.47a |
Gaiella | 1.65a | 2.57a | 2.73a | 3.33a | 芽球菌属 Blastococcus | 0.99b | 2.08a | 1.73ab | 1.37ab |
norank_o__JG30-KF-CM45 | 3.59a | 3.59a | 3.46a | 2.60a | norank_c__P2-11E | 0.45a | 0.51a | 0.54a | 0.92a |
硝化螺菌属 Nitrospira | 1.81a | 1.52a | 1.61a | 2.34a | 类诺卡氏菌属 Nocardioides | 0.72b | 1.79a | 1.77a | 1.26ab |
norank_f__Nitrosomonadaceae | 1.94a | 1.74a | 1.78a | 2.30a | norank_f__288-2 | 0.85a | 0.87a | 0.72a | 1.11a |
芽孢杆菌属 Bacillus | 1.94a | 1.10a | 1.01a | 1.42a | norank_f__Elev-16S-1332 | 0.53b | 0.96a | 1.12a | 1.01a |
norank_f__Tepidisphaeraceae | 2.15a | 2.44a | 2.29a | 1.90a | norank_c__TK10 | 1.07a | 1.31a | 1.42a | 1.01a |
norank_f__Planctomycetaceae | 1.35b | 1.73ab | 1.94a | 1.72ab | RB41 | 1.15a | 1.25a | 0.93a | 1.17a |
norank_f__0319-6M6 | 1.04b | 1.73a | 1.59a | 1.77a | norank_p__Armatimonadetes | 1.15a | 0.97ab | 0.92ab | 0.78b |
Solirubrobacter | 1.03c | 2.02ab | 2.24a | 1.66b | Pir4_lineage | 1.32a | 0.40b | 0.45b | 0.50b |
norank_f__Anaerolineaceae | 2.01a | 1.00b | 1.11b | 1.42b | norank_f__Cytophagaceae | 1.26a | 0.62b | 0.59b | 0.33b |
norank_c__KD4-96 | 0.90b | 1.37a | 1.46a | 1.42a | 溶杆菌属 Lysobacter | 1.06a | 0.18b | 0.31b | 0.16b |
链霉菌属 Streptomyces | 1.50a | 1.61a | 1.21a | 1.11a | 其他Others | 39.26a | 37.67a | 37.62a | 33.88a |
假节杆菌属 Pseudarthrobacter | 1.36a | 2.61a | 1.73a | 1.49a |
1 | Yang X M, Kay B D. Rotation and tillage effects on soil organic carbon sequestration in a typical Hapludalf in Southern Ontario. Soil and Tillage Research, 2001, 59(3/4): 107-114. |
2 | Anthony M W, Craeme J B. Managing legume leys, residues and fertilizers to enhance the sustainability of wheat yields and nutrient balance: 2. Soil physical fertility and carbon. Soil and Tillage Research, 2000, 54(1/2): 77-89. |
3 | Li L L, Huang G B, Zhang R Z, et al. Effects of lucerne removal time on soil water and productivity in a lucerne-wheat rotation on the western Loess Plateau. Acta Agronomica Sinica, 2011, 37(4): 686-693. |
4 | Li Y S, Huang M B. Pasture yield and soil water depletion of continuous growing alfalfa in the Loess Plateau of China. Agriculture Ecosystems & Environment, 2008, 124(1): 24-32. |
5 | Jia Y, Li F M, Wang X L. Soil quality responses to alfalfa watered with a field micro-catchment technique in the Loess Plateau of China. Field Crops Research, 2005, 95(1): 64-74. |
6 | Han Q F, Zhou F, Jia J, et al. Effect of fertilization on productivity different producing performance alfalfa varieties and soil fertility. Journal of Plant Nutrition and Fertilizer, 2009, 15(6): 1413-1418. |
韩清芳, 周芳, 贾珺, 等. 施肥对不同品种苜蓿生产力及土壤肥力的影响. 植物营养与肥料学报, 2009, 15(6): 1413-1418. | |
7 | Rillig M C, Mummey D L. Mycorrhizas and soil structure. The New Phytologist, 2006, 171(1): 41-53. |
8 | Sun B J, Jia S X, Zhang X P, et al. Impact of tillage practices on microbial biomass carbon in top layer of black soils. Chinese Journal of Applied Ecology, 2015, 26(1): 101-107. |
孙冰洁, 贾淑霞, 张晓平, 等. 耕作方式对黑土表层土壤微生物生物量碳的影响. 应用生态学报, 2015, 26(1): 101-107. | |
9 | Zhang W, Wei H L, Gao H W, et al. Advances of studies on soil microbial diversity and environmental impact factors. Chinese Journal of Ecology, 2005, 24(1): 48-52. |
张薇, 魏海雷, 高洪文, 等. 土壤微生物多样性及其环境影响因子研究进展. 生态学杂志, 2005, 24(1): 48-52. | |
10 | Jin F X, Ma D M, Liu H Y, et al. Effects of planting years of alfalfa on soil quality. Agricultural Research in the Arid Areas, 2014, 32(2): 73-77. |
金风霞, 麻冬梅, 刘昊焱, 等. 不同种植年限苜蓿地土壤环境效应的研究. 干旱地区农业研究, 2014, 32(2): 73-77. | |
11 | Peter H, Sommaruga R. Shift in diversity and function of lake bacteria communities upon glacier retreat. The International Society for Music Education Journal, 2016, 10(7): 1545-1554. |
12 | Mohammad B, Falk H, Forslund S K, et al. Structure and function of the global topsoil microbiome. Nature, 2018, 560(7717): 233-237. |
13 | Maestre F T, Delgado-Baquerizo M, Jeffries T C, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences, 2015, 112(51): 15684-15689. |
14 | Aßhauer K P, Bernd W, Rolf D, et al. Tax4 Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 2015, 31(17): 2882-2884. |
15 | Stilianos L, Saulo M S, Aliny P, et al. High taxonomic variability despite stable functional structure across microbial communities. Nature Ecology & Evolution, 2016, 1(1): 15. |
16 | Dong Z Y, Hong M, Hu H J, et al. Effect of excess nitrogen loading on the metabolic potential of the bacterial community in oligotrophic coastal water. Acta Scientiae Circumstantiae, 2018, 38(2): 457-466. |
董志颖, 洪慢, 胡晗静, 等. 过量氮输入对寡营养海水细菌群落代谢潜力的影响. 环境科学学报, 2018, 38(2): 457-466. | |
17 | Sun F, Tian W, Zhang F, et al. Composition and predictive functional analysis of rhizosphere bacterial communities in riparian buffer strips in the Danjiangkou reservoir, China. Environmental Science, 2019, 40(1): 421-429. |
孙峰, 田伟, 张菲, 等. 丹江口库区库滨带植被土壤细菌群落多样性及 PICRUSt 功能预测分析.环境科学, 2019, 40(1): 421-429. | |
18 | Agnello A C, Huguenot D, Van Hullebusch E D, et al. Citric acid- and Tween 80-assisted phytoremediation of a co-contaminated soil: Alfalfa (Medicago sativa) performance and remediation potential. Environmental Science and Pollution Research, 2016, 23(9): 9215-9226. |
19 | Tai J C. Study on effects of planting years on alfalfa soil physical-chemical characteristics and microorganisms. Tongliao: Inner Mongolia University for the Nationalities, 2008. |
邰继承. 种植年限对紫花苜蓿地土壤理化特性及其微生物影响的研究. 通辽: 内蒙古民族大学, 2008. | |
20 | Cai Y, Hao M D, Zhang L Q, et al. Effect of cropping systems on microbial diversity in black loessial soil tested by 454 sequencing technology. Acta Agronomica Sinica, 2015, 41(2): 339-346. |
蔡艳, 郝明德, 张丽琼, 等. 应用454测序技术分析种植制度对黑垆土微生物多样性的影响. 作物学报, 2015, 41(2): 339-346. | |
21 | Gen D Z, Huang J H, Huo N, et al. Characteristics of soil microbial and nematode communities under artificial Medicago sativa grasslands with different cultivation years in semi-arid region of Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 2020, 31(4): 1365-1377. |
耿德洲, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征.应用生态学报, 2020, 31(4): 1365-1377. | |
22 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
23 | Sinclair L, Osman O A, Bertilsson S, et al. Microbial community composition and diversity via 16S rRNA gene amplicons: Evaluating the illumine platform. PLoS One, 2015, 10(2): e0116955. |
24 | Mueller R C, Paula F S, Mirza B S, et al. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. The International Society for Music Education Journal, 2014, 8(7): 1548-1550. |
25 | Morgan G L, Jesse Z, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31(9): 814-821. |
26 | Zhang C X, Hao M D, Wang X G, et al. Study on soil nitrogen and fertility distribution characteristics in alfalfa field in gully region of the Loess Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(6): 1107-1111. |
张春霞, 郝明德, 王旭刚, 等. 黄土高原地区紫花苜蓿生长过程中土壤养分的变化规律. 西北植物学报, 2004, 24(6): 1107-1111. | |
27 | Li W J, Wang Z, Han Q F, et al. Evaluation on carbon sequestration effects of artificial alfalfa pastures in the Loess Plateau area. Acta Ecologica Sinica, 2013, 33(23): 7467-7477. |
李文静, 王振, 韩清芳, 等. 黄土高原人工苜蓿草地固碳效应评估. 生态学报, 2013, 33(23): 7467-7477. | |
28 | Liu R L, Zhang A P, Li Y H, et al. Rice yield, nitrogen use efficiency (NUE) and nitrogen leaching losses as affected by long-term combined applications of manure and chemical fertilizers in Yellow River irrigated region of Ningxia, China. The Journal of Agro-Environment Science, 2015, 34(5): 947-954. |
刘汝亮, 张爱平, 李友宏, 等. 长期配施有机肥对宁夏引黄灌区水稻产量和稻田氮素淋失及平衡特征的影响. 农业环境科学学报, 2015, 34(5): 947-954. | |
29 | Yang H S, Cao M J, Fan F, et al. Effects of the number of growthyears of alfalfa on the physical and chemical properties of soil.Chinese Journal Grassland, 2006, 28(6): 29-32. |
杨恒山, 曹敏建, 范富, 等. 紫花苜蓿生长年限对土壤理化性状的影响. 中国草地学报, 2006, 28(6): 29-32. | |
30 | Wen X Y, Eric D, Wu Y, et al. Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop’s rhizosphere. Journal of Integrative Agriculture, 2016, 15(8): 1892-1902. |
31 | Liang Z T, Deng J Q, Wang Z K, et al. Differences in soil bacterial community composition among three forage-crop rotations on the Longdong Loess Plateau. Acta Prataculturae Sinica, 2017, 26(8): 180-191. |
梁志婷, 邓建强, 王自奎, 等. 陇东旱塬区不同粮草轮作模式下土壤细菌群落组成特征.草业学报, 2017, 26(8): 180-191. | |
32 | Rui J, Peng J, Lu Y. Succession of bacterial populations during plant residue decomposition in rice field soil. Applied and Environmental Microbiology, 2009, 75(14): 4879-4886. |
33 | Luo Z Z, Niu Y N, Li L L, et al. Soil moisture and alfalfa productivity response from different years of growth on the Loess Plateau of central Gansu. Acta Prataculturae Sinica, 2015, 24(1): 31-38. |
罗珠珠, 牛伊宁, 李玲玲, 等. 陇中黄土高原不同种植年限苜蓿草地土壤水分及产量响应. 草业学报, 2015, 24(1): 31-38. | |
34 | Cai L, Wang L L, Luo Z Z, et al. Meta-analysis of alfalfa yield and WUE response to growing ages in China. Acta Prataculturae Sinica, 2020, 29(6): 27-38. |
才璐, 王林林, 罗珠珠, 等. 中国苜蓿产量及水分利用效率对种植年限响应的Meta分析. 草业学报, 2020, 29(6): 27-38. | |
35 | Liu F C, Xing S J, Ma H L, et al. Effects of continuous drought on soil bacteria populations and community diversity in sweet cherry rhizosphere. Acta Ecologica Sinica, 2014, 34(3): 642-649. |
刘方春, 邢尚军, 马海林, 等. 持续干旱对樱桃根际土壤细菌数量及结构多样性影响. 生态学报, 2014, 34(3): 642-649. | |
36 | Fei Y C, Huang Y, Zhang X, et al. Effects of different organic fertilizer treatments on soil microbial community structure of camellia oleifera plantation in purple soil area. Chinese Journal of Applied & Environmental Biology, 2020, 26(4): 1-12. |
费裕翀, 黄樱, 张筱, 等. 不同有机肥处理对紫色土油茶林土壤微生物群落结构的影响. 应用与环境生物学报, 2020, 26(4): 1-12. | |
37 | Jennings J A, Nelson C J. Influence of soil texture on alfalfa auto toxicity. Agronomy Journal, 1998, 90(1): 54-58. |
38 | Faulwetter J L, Burr M D, Parker A E, et al. Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms. Microbial Ecology, 2013, 65(1): 111-127. |
39 | Liu Q C, Zhang Q Q, Tian X L, et al. Composition of bacterial community in maize rhizosphere and screening of biocontrol bacteria strains. Chinese Journal of Biological Control, 2018, 34(5): 771-778. |
刘泉成, 张茜茜, 田雪亮, 等. 玉米根际细菌群落特征及生防菌筛选. 中国生物防治学报, 2018, 34(5): 771-778. | |
40 | Deng C F, Luo Z Z, Li L L, et al. Characterization of greenhouse gases emissions from rainfed soils in different cropping systems on the Loess Plateau. Acta Prataculturae Sinica, 2018, 27(9): 1-13. |
邓长芳, 罗珠珠, 李玲玲, 等. 黄土高原雨养农业区不同种植模式土壤温室气体排放特征. 草业学报, 2018, 27(9): 1-13. | |
41 | Yang X M, Xu Y C, Huang Q W, et al. Organic-link fertilizers and its relation to sustainable development of agriculture and protection of eco-environment. Acta Pedologica sinica, 2008, 45(5): 925-932. |
杨兴明, 徐阳春, 黄启为, 等. 有机(类)肥料与农业可持续发展和生态环境保护. 土壤学报, 2008, 45(5): 925-932. | |
42 | Yao H Y, Jiao X D, Wu F Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant and Soil, 2006, 284(1/2): 195-203. |
43 | Yuan H C, Qin H L, Liu S L, et al. Response of abundance and composition of the bacterial community to long-term fertilization in paddy soils. Scientia Agricultura Sinica, 2011, 44(22): 66-73. |
袁红朝, 秦红灵, 刘守龙, 等.长期施肥对红壤性水稻土细菌群落结构和数量的影响. 中国农业科学, 2011, 44(22): 66-73. | |
44 | Ramirez K S, Lauber C L, Knight R, et al. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology, 2010, 91(12): 3463-3470. |
45 | Lakshmanan V, Selvaraj G, Bais H P. Functional soil microbiome: Belowground solutions to an aboveground problem. Plant Physiology, 2014, 166(2): 689-700. |
46 | Berendsen R L, Pieter S E C M, Bakker P A. The rhizo-sphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478-486. |
47 | Song L, Pan K W, Wang J C, et al. Effects of phenolic acids on seed germination and seedling antioxidant enzyme activity of alfalfa. Acta Ecologica Sinica, 2006, 26(10): 3393-3403. |
宋亮, 潘开文, 王进闯, 等. 酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响. 生态学报, 2006, 26(10): 3393-3403. | |
48 | Zhao X, Liu H L, Yang P, et al. Effects of drip irrigation on bacterial diversity and community structure in rhizosphere soil of alfalfa. Microbiology China, 2019, 46(10): 2579-2590. |
赵祥, 刘红玲, 杨盼, 等. 滴灌对苜蓿根际土壤细菌多样性和群落结构的影响.微生物学通报, 2019, 46(10): 2579-2590. | |
49 | Kessel M A H J, Speth D R, Albertsen M, et al. Complete nitrification by a single microorganism. Nature, 2015, 528(7583): 555-559. |
50 | Baker B J, Sheik C S, Taylor C A, et al. Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. International Society for Music Education Journal, 2013, 7(10): 1962-1973. |
51 | de Vries F T, Griffiths R I, Mark B, et al. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9(1): 30-33. |
52 | Yang P, Zhai Y P, Zhao X, et al. Effect of interaction between arbuscular mycorrhizal fungi and rhizobium on Medicago sativa rhizosphere soil bacterial community structure and PICRUSt functional prediction. Microbiology China, 2020, 47(11): 3868-3879. |
杨盼, 翟亚萍, 赵祥, 等. 丛枝菌根真菌和根瘤菌互作对苜蓿根际土壤细菌群落结构的影响及PICRUSt功能预测分析. 微生物学通报, 2020, 47(11): 3868-3879. | |
53 | Du Y J, Gao G L, Chen L H, et al. Soil bacteria community structure and function prediction in the Hulun Buir sandy area. China Environmental Science, 2019, 39(11): 4840-4848. |
杜宇佳, 高广磊, 陈丽华, 等. 呼伦贝尔沙区土壤细菌群落结构与功能预测. 中国环境科学, 2019, 39(11): 4840-4848. | |
54 | Song M, Yun H Y, Kim Y H. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. Journal of Ginseng Research, 2014, 38(2): 136-145. |
55 | Zhang P, Yang P Z, Wang W D, et al. Study on physiological change of alfalfa with symbiotic rhizobium under drought stress. Acta Agrestia Sinica, 2013, 21(5): 938-944. |
张攀, 杨培志, 王卫栋, 等. 干旱胁迫下根瘤菌共生紫花苜蓿抗旱生理变化研究. 草地学报, 2013, 21(5): 938-944. | |
56 | Sun X, Lin Y L, Li B L, et al. Analysis and function prediction of soil microbial communities of Cynomorium songaricum in two daodi-origins. Acta Pharmaceutica Sinica, 2020, 55(6): 1334-1344. |
孙晓, 林余霖, 李葆莉, 等. 干旱沙生药用植物锁阳土壤微生物群落分析与功能预测. 药学学报, 2020, 55(6): 1334-1344. |
[1] | Xiao-fang ZHANG, Xiao-hong WEI, Fang LIU, Xue-mei ZHU. Endogenous hormone responses to nitric oxide in alfalfa seedlings under PEG stress [J]. Acta Prataculturae Sinica, 2021, 30(4): 160-169. |
[2] | LI Zhi-long, LUO Chao-yue, QIU Hui-zhen, FU Xiao, DENG De-lei, ZHANG Chun-hong, SHEN Qi-rong. Effects of continuous nitrogen application on bacterial community structure and denitrification in the rhizosphere of potato [J]. Acta Prataculturae Sinica, 2020, 29(6): 105-116. |
[3] | WEI Peng, AN Sha-zhou, DONG Yi-qiang, SUN Zong-jiu, Bieerdawulieti·Xihayi, LI Chao. A high-throughput sequencing evaluation of bacterial diversity and community structure of the desert soil in the Junggar Basin [J]. Acta Prataculturae Sinica, 2020, 29(5): 182-190. |
[4] | Cheng-yi LI, Xi-lai LI, Yuan-wu YANG, Hong-lin LI, De-fei LIANG. Effect of nitrogen addition on soil bacterial diversity in alpine degraded grasslands of differing slope [J]. Acta Prataculturae Sinica, 2020, 29(12): 161-170. |
[5] | LIU Hong-mei, YANG Dian-lin, ZHANG Hai-fang, ZHAO Jian-ning, WANG Hui, ZHANG Nai-qin. Effects of nitrogen addition on the soil bacterial community structure of Stipa baicalensis steppe [J]. Acta Prataculturae Sinica, 2019, 28(9): 23-32. |
[6] | LI Hai-yun, YAO Tuo, MA Ya-chun, ZHANG Hui-rong, LU Xiao-wen, YANG Xiao-lei, XIA Dong-hui, ZHANG Jian-gui, GAO Ya-min. Soil bacterial community changes across a degradation gradient in alpine meadow grasslands in the central Qilian Mountains [J]. Acta Prataculturae Sinica, 2019, 28(8): 170-179. |
[7] | WU Wen-xian, ZHANG Lei, HUANG Xiao-qin, YANG Xiao-xiang, XUE Long-hai, LIU Yong. Difference in soil microbial diversity in artificial grasslands of the Northwest Plateau of Sichuan Province [J]. Acta Prataculturae Sinica, 2019, 28(3): 29-41. |
[8] | WU Juan-zi, QIAN Chen, LIU Zhi-wei, PAN Yu-mei, ZHONG Xiao-xian. De novo transcriptomic analysis for lignin synthesis in Cenchrus purpureus using RNA-seq [J]. Acta Prataculturae Sinica, 2019, 28(1): 150-161. |
[9] | ZHANG Dong-Yan, WANG Jun, YANG Shui-Ping, ZHANG Xue, LIU Jing, ZHAO Jian, HE Da-Min, YANG Hong-Jun, MO Jing-Jing, GOU Jian-Yu, ZHAO Xin-Mei, JIANG Wei, DING Wei, CHEN Da-Xia. Influence of Scrophularia ningpoensis-tobacco intercropping on bacterial community structure in soil [J]. Acta Prataculturae Sinica, 2017, 26(6): 120-130. |
[10] | LENG Nuan, LIU Xiao-Wei, ZHANG Na, XU Li-Xin. Differential gene analysis of Poa pratensis in response to drought stress [J]. Acta Prataculturae Sinica, 2017, 26(12): 128-137. |
[11] | ZHAO Meng, WEI Xiao-Hong. Effects of nitric oxide on Medicago sativa seed germination under imbibitional chilling [J]. Acta Prataculturae Sinica, 2015, 24(4): 87-94. |
[12] | GE Jian, YANG Cui-Jun, YANG Zhi-Min, BAI Xue-Mei, ZHAO Hai-Xiang, LIU Gui-He. Quality of mixed naked oats (Avena nuda) and alfalfa (Medicago sativa) silage [J]. Acta Prataculturae Sinica, 2015, 24(4): 104-113. |
[13] | WEN Zhao-Hui, NAN Zhi-Biao. Detection of pathogenic organisms in Medicago sativa in Zhangye, Gansu Province [J]. Acta Prataculturae Sinica, 2015, 24(4): 121-126. |
[14] | BAI Yu, GAO Xingke, WANG Yechen, CHEN Zhongchao, SUN Juan, WAN Fanghao, YUAN Zhonglin. Field comparison of the resistance of 33 alfalfa varieties to thrips [J]. Acta Prataculturae Sinica, 2015, 24(3): 187-194. |
[15] | LIU Dongxia, LIU Guihe, YANG Zhimin. The effects of planting and harvesting factors on hay yield and stem-leaf ratio of Medicago sativa [J]. Acta Prataculturae Sinica, 2015, 24(3): 48-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||