Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (9): 107-117.DOI: 10.11686/cyxb2021369
Yang-yang MIAO(), Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU()
Received:
2021-10-09
Revised:
2022-01-11
Online:
2022-09-20
Published:
2022-08-12
Contact:
Shan-min QU
Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress[J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117.
菌株编号Strain number | 菌株Strain | 分离部位Separation site |
---|---|---|
JG1 | 普城沙雷氏菌Serratia plymuthica | 碱蓬根内S. glauca root |
JT4 | 嗜麦芽寡养单胞菌Stenotrophomonas maltophilia | 碱蓬根际土壤S. glauca rhizosphere soil |
JJ5 | 普城沙雷氏菌S. plymuthica | 碱蓬茎内S. glauca stem |
Table 1 Rhizobacteria and endophytic bacteria of S. glauca
菌株编号Strain number | 菌株Strain | 分离部位Separation site |
---|---|---|
JG1 | 普城沙雷氏菌Serratia plymuthica | 碱蓬根内S. glauca root |
JT4 | 嗜麦芽寡养单胞菌Stenotrophomonas maltophilia | 碱蓬根际土壤S. glauca rhizosphere soil |
JJ5 | 普城沙雷氏菌S. plymuthica | 碱蓬茎内S. glauca stem |
菌株编号 Strain number | 盐碱浓度Salt-alkaline concentration (mmol·L-1) | |||
---|---|---|---|---|
0 | 100 | 150 | 200 | |
CK | 0.5370±0.0153b | 0.4598±0.2188b | 0.4175±0.0143c | 0.2780±0.0134d |
JG1 | 0.9474±0.0111b | 0.5206±0.1197b | 1.0704±0.1087a | 1.1538±0.0716a |
JT4 | 2.2427±0.3351a | 0.6021±0.1345b | 0.7770±0.0874b | 0.6577±0.0144c |
JJ5 | 0.5847±0.0767b | 1.1492±0.1753a | 0.6565±0.0270b | 0.9697±0.0289b |
Table 2 Effects of S. glauca rhizosphere growth-promoting bacteria and endophytic bacteria on the aboveground fresh weight of alfalfa under salt-alkaline stress (g·5 plant-1)
菌株编号 Strain number | 盐碱浓度Salt-alkaline concentration (mmol·L-1) | |||
---|---|---|---|---|
0 | 100 | 150 | 200 | |
CK | 0.5370±0.0153b | 0.4598±0.2188b | 0.4175±0.0143c | 0.2780±0.0134d |
JG1 | 0.9474±0.0111b | 0.5206±0.1197b | 1.0704±0.1087a | 1.1538±0.0716a |
JT4 | 2.2427±0.3351a | 0.6021±0.1345b | 0.7770±0.0874b | 0.6577±0.0144c |
JJ5 | 0.5847±0.0767b | 1.1492±0.1753a | 0.6565±0.0270b | 0.9697±0.0289b |
菌株编号 Strain number | 盐碱浓度Salt-alkaline concentration (mmol·L-1) | |||
---|---|---|---|---|
0 | 100 | 150 | 200 | |
CK | 0.0870±0.0048b | 0.3374±0.0607c | 0.2560±0.0158c | 0.2405±0.0231c |
JG1 | 0.1982±0.0061b | 0.7080±0.0748b | 0.7244±0.0797b | 2.4406±0.4290a |
JT4 | 0.5099±0.0790a | 0.5305±0.0035bc | 0.8993±0.0690b | 0.9783±0.4650bc |
JJ5 | 0.1196±0.0291b | 1.2271±0.1562a | 2.9968±0.2218a | 2.1134±0.4620ab |
Table 3 Effects of S. glauca rhizosphere growth-promoting bacteria and endophytic bacteria on root fresh weight of alfalfa under salt-alkaline stress (g·5 plant-1)
菌株编号 Strain number | 盐碱浓度Salt-alkaline concentration (mmol·L-1) | |||
---|---|---|---|---|
0 | 100 | 150 | 200 | |
CK | 0.0870±0.0048b | 0.3374±0.0607c | 0.2560±0.0158c | 0.2405±0.0231c |
JG1 | 0.1982±0.0061b | 0.7080±0.0748b | 0.7244±0.0797b | 2.4406±0.4290a |
JT4 | 0.5099±0.0790a | 0.5305±0.0035bc | 0.8993±0.0690b | 0.9783±0.4650bc |
JJ5 | 0.1196±0.0291b | 1.2271±0.1562a | 2.9968±0.2218a | 2.1134±0.4620ab |
Fig.7 Effects of S. glauca rhizosphere growth-promoting bacteria and endophytic bacteria on leaf chlorophyll content of alfalfa under salt-alkaline stress
菌株编号 Strain number | 盐碱浓度Salt-alkaline concentration (mmol·L-1) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 150 | 200 | |||||
平均值Mean | 综合排名Rank | 平均值Mean | 综合排名Rank | 平均值Mean | 综合排名Rank | 平均值Mean | 综合排名Rank | |
CK | 0.114 | 3 | 0.000 | 4 | 0.034 | 4 | 0.019 | 4 |
JG1 | 0.448 | 2 | 0.388 | 2 | 0.427 | 2 | 0.546 | 2 |
JT4 | 1.677 | 1 | 1.185 | 1 | 1.164 | 1 | 1.125 | 1 |
JJ5 | -0.217 | 4 | 0.001 | 3 | 0.053 | 3 | 0.107 | 3 |
Table 4 Comprehensive analysis of membership function values of S. glauca rhizosphere growth-promoting bacteria and endophytic bacteria on alfalfa salt-alkaline tolerance indexes under salt-alkaline stress
菌株编号 Strain number | 盐碱浓度Salt-alkaline concentration (mmol·L-1) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 150 | 200 | |||||
平均值Mean | 综合排名Rank | 平均值Mean | 综合排名Rank | 平均值Mean | 综合排名Rank | 平均值Mean | 综合排名Rank | |
CK | 0.114 | 3 | 0.000 | 4 | 0.034 | 4 | 0.019 | 4 |
JG1 | 0.448 | 2 | 0.388 | 2 | 0.427 | 2 | 0.546 | 2 |
JT4 | 1.677 | 1 | 1.185 | 1 | 1.164 | 1 | 1.125 | 1 |
JJ5 | -0.217 | 4 | 0.001 | 3 | 0.053 | 3 | 0.107 | 3 |
项目 Item | 苜蓿耐盐碱性指标 Salt-alkaline tolerance indexes of alfalfa | 特征值 Eigenvalue | 贡献率 Contribution (%) | 累积贡献率 Cumulative contribution (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | ||||
盐碱浓度Salt-alkaline concentration (0 mmol·L-1) | ||||||||||||
Ⅰ | 0.98 | 0.96 | 0.95 | 0.94 | 0.91 | 0.84 | 0.57 | 0.49 | 0.51 | 6.03 | 66.98 | 66.98 |
Ⅱ | 0.13 | -0.19 | -0.22 | 0.19 | 0.13 | -0.42 | 0.82 | -0.79 | 0.45 | 1.83 | 20.29 | 87.26 |
Ⅲ | -0.12 | 0.22 | 0.24 | -0.28 | -0.40 | -0.34 | 0.05 | 0.38 | 0.73 | 1.15 | 12.74 | 100.00 |
盐碱浓度Salt-alkaline concentration (100 mmol·L-1) | ||||||||||||
Ⅰ | 0.99 | 0.93 | 0.88 | 0.85 | 0.78 | 0.35 | 0.63 | 0.68 | 0.28 | 5.00 | 55.53 | 55.53 |
Ⅱ | -0.10 | -0.28 | 0.10 | -0.50 | -0.55 | 0.92 | 0.77 | 0.71 | -0.65 | 3.01 | 33.41 | 88.94 |
盐碱浓度Salt-alkaline concentration (150 mmol·L-1) | ||||||||||||
Ⅰ | 0.99 | 0.98 | 0.83 | 0.71 | 0.57 | 0.58 | 0.56 | 0.17 | 0.45 | 4.36 | 48.45 | 48.45 |
Ⅱ | 0.09 | -0.16 | -0.37 | 0.65 | 0.81 | -0.77 | -0.66 | 0.48 | 0.44 | 2.71 | 30.06 | 78.51 |
Ⅲ | -0.07 | -0.08 | -0.42 | 0.27 | 0.14 | 0.25 | 0.49 | 0.86 | -0.78 | 1.93 | 21.49 | 100.00 |
盐碱浓度Salt-alkaline concentration (200 mmol·L-1) | ||||||||||||
Ⅰ | 0.99 | 0.97 | 0.93 | 0.90 | 0.72 | 0.56 | 0.59 | 0.47 | 0.60 | 5.35 | 59.46 | 59.46 |
Ⅱ | -0.06 | -0.23 | -0.32 | -0.43 | 0.70 | 0.14 | 0.81 | 0.79 | -0.77 | 2.70 | 29.99 | 89.45 |
Table 5 Principal component analysis of salt-alkaline tolerance index of S. glauca rhizosphere growth-promoting bacteria and endophytic bacteria on alfalfa under salt-alkaline stress
项目 Item | 苜蓿耐盐碱性指标 Salt-alkaline tolerance indexes of alfalfa | 特征值 Eigenvalue | 贡献率 Contribution (%) | 累积贡献率 Cumulative contribution (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | ||||
盐碱浓度Salt-alkaline concentration (0 mmol·L-1) | ||||||||||||
Ⅰ | 0.98 | 0.96 | 0.95 | 0.94 | 0.91 | 0.84 | 0.57 | 0.49 | 0.51 | 6.03 | 66.98 | 66.98 |
Ⅱ | 0.13 | -0.19 | -0.22 | 0.19 | 0.13 | -0.42 | 0.82 | -0.79 | 0.45 | 1.83 | 20.29 | 87.26 |
Ⅲ | -0.12 | 0.22 | 0.24 | -0.28 | -0.40 | -0.34 | 0.05 | 0.38 | 0.73 | 1.15 | 12.74 | 100.00 |
盐碱浓度Salt-alkaline concentration (100 mmol·L-1) | ||||||||||||
Ⅰ | 0.99 | 0.93 | 0.88 | 0.85 | 0.78 | 0.35 | 0.63 | 0.68 | 0.28 | 5.00 | 55.53 | 55.53 |
Ⅱ | -0.10 | -0.28 | 0.10 | -0.50 | -0.55 | 0.92 | 0.77 | 0.71 | -0.65 | 3.01 | 33.41 | 88.94 |
盐碱浓度Salt-alkaline concentration (150 mmol·L-1) | ||||||||||||
Ⅰ | 0.99 | 0.98 | 0.83 | 0.71 | 0.57 | 0.58 | 0.56 | 0.17 | 0.45 | 4.36 | 48.45 | 48.45 |
Ⅱ | 0.09 | -0.16 | -0.37 | 0.65 | 0.81 | -0.77 | -0.66 | 0.48 | 0.44 | 2.71 | 30.06 | 78.51 |
Ⅲ | -0.07 | -0.08 | -0.42 | 0.27 | 0.14 | 0.25 | 0.49 | 0.86 | -0.78 | 1.93 | 21.49 | 100.00 |
盐碱浓度Salt-alkaline concentration (200 mmol·L-1) | ||||||||||||
Ⅰ | 0.99 | 0.97 | 0.93 | 0.90 | 0.72 | 0.56 | 0.59 | 0.47 | 0.60 | 5.35 | 59.46 | 59.46 |
Ⅱ | -0.06 | -0.23 | -0.32 | -0.43 | 0.70 | 0.14 | 0.81 | 0.79 | -0.77 | 2.70 | 29.99 | 89.45 |
1 | Yamazaki K, Ishimori M, Kajiya-Kanegae H, et al. Effect of salt tolerance on biomass production in a large population of sorghum accessions. Breed Science, 2020, 70(2): 167-175. |
2 | Li M, Chen R, Jiang Q, et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Molecular Biology, 2021, 105(3): 333-345. |
3 | Liu Q, Gao Y N, Liu X, et al. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress. Acta Ecologica Sinica, 2018, 38(17): 6143-6155. |
刘倩, 高娅妮, 柳旭, 等. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响. 生态学报, 2018, 38(17): 6143-6155. | |
4 | Wang S. Biodiversity and polyphasic taxonomy of culturable halophilic bacteria and archaea from saline-alkaline soil in Daqing. Harbin: Harbin Institute of Technology, 2011. |
王爽. 大庆盐碱土可培养嗜盐细菌与古菌多样性及多相分类研究. 哈尔滨: 哈尔滨工业大学, 2011. | |
5 | Bai S H, Ma F Y, Hou D, et al. Change in population niche during vegetation community succession in the Yellow River Delta. Chinese Journal of Eco-Agriculture, 2010, 18(3): 581-587. |
白世红, 马风云, 侯栋, 等. 黄河三角洲植被演替过程种群生态位变化研究. 中国生态农业学报, 2010, 18(3): 581-587. | |
6 | Yang C, Chen H Y, Li J S, et al. Soil improving effect of Suaeda salsa on heavy coastal saline-alkaline land. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1578-1586. |
杨策, 陈环宇, 李劲松, 等. 盐地碱蓬生长对滨海重盐碱地的改土效应. 中国生态农业学报, 2019, 27(10): 1578-1586. | |
7 | Hu Y L, Li H D, Wang H F, et al. Enzyme screening and isolation of Suaeda salsa endophytes. Journal of Tangshan Normal University, 2018, 40(6): 70-72, 76. |
胡宇玲, 厉海笛, 王会芳, 等. 盐地碱蓬内生菌的分离及功能酶的检测. 唐山师范学院学报, 2018, 40(6): 70-72, 76. | |
8 | Ma X, Cheng Y, Ma R L. Research progress of plant growth-promoting mechanisms of plant growth-promoting rhizobacteria. Shandong Agricultural Sciences, 2019, 51(5): 148-154. |
马欣, 成妍, 马蓉丽. 植物根围促生细菌促生机制研究进展. 山东农业科学, 2019, 51(5): 148-154. | |
9 | Cao M M, Wang F, Zhou B H, et al. Community distribution of the rhizospheric and endophytic bacteria of Phragmites australis and their limiting factors in iron tailings. Environmental Science, 2021, 42(10): 4998-5009. |
曹曼曼, 王飞, 周北海, 等. 铁尾矿芦苇根际微生物和根内生菌群落分布及其限制性因子解析. 环境科学, 2021, 42(10): 4998-5009. | |
10 | Kang Y J, Cheng J, Mei L J, et al. Action mechanisms of plant growth-promoting rhizabacteria (PGPR): A review. Chinese Journal of Applied Ecology, 2010, 21(1): 232-238. |
康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌作用机制研究进展. 应用生态学报, 2010, 21(1): 232-238. | |
11 | Zahir Z A, Zafar-ul-Hye M, Sajjad S, et al. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biology and Fertility of Soils, 2011, 47(4): 457-465. |
12 | Estevez J, Dardanelli M S, Megias M, et al. Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis, 2009, 49(1): 29-36. |
13 | Xiang J L, Tang C R, Wang J Q, et al. Screening and identification of Medicago sativa Linn growth promoting rhizobacteria under saline-alkali stress. Agricultural Research in the Arid Areas, 2019, 37(2): 266-272. |
向君亮, 唐呈瑞, 王佳琦, 等. 盐碱胁迫下一株促进苜蓿生长的细菌筛选与鉴定. 干旱地区农业研究, 2019, 37(2): 266-272. | |
14 | Liu J L. Isolation of plant growth promoting rhizobacteria and the mechanism of relieving saline-alkaline stress on alfalfa. Harbin: Harbin Normal University, 2017. |
刘佳莉. 植物根际促生细菌的筛选及其缓解紫花苜蓿盐碱胁迫的作用研究. 哈尔滨: 哈尔滨师范大学, 2017. | |
15 | Zhao X, Ye L. Effects of salt alkali stress on growth, quality and photosynthetic characteristics of alfalfa. Jiangsu Agricultural Sciences, 2017, 45(21): 176-180. |
赵霞, 叶林. 盐碱胁迫对紫花苜蓿生长、品质及光合特性的影响. 江苏农业科学, 2017, 45(21): 176-180. | |
16 | Wu Y, Tian Y, Zhang H X, et al. Effects of salinity, alkalinity, temperature and their interactions on seed germination of Medicago falcata. Pratacultural Science, 2015, 32(11): 1847-1853. |
武祎, 田雨, 张红香, 等. 盐、碱胁迫与温度对黄花苜蓿种子发芽的影响. 草业科学, 2015, 32(11): 1847-1853. | |
17 | Jiang Y M, Gao Y M, Yao T, et al. Effect of plant growth-promoting rhizobacteria on the growth of Uraria crinita and ×Triticale Wittmack. Pratacultural Science, 2018, 35(8): 1910-1918. |
蒋永梅, 高亚敏, 姚拓, 等. 植物根际促生菌(PGPR)对非宿主植物猫尾草和小黑麦生长的促生作用. 草业科学, 2018, 35(8): 1910-1918. | |
18 | Shi D C, Zhao K F. Effects of sodium chloride and carbonate on growth of Puccinellia and on present state of mineral elements in nutrient solution. Acta Prataculturae Sinica, 1997, 6(2): 51-61. |
石德成, 赵可夫. NaCl和Na2CO3对星星草生长及营养液中主要矿质元素存在状态的影响. 草业学报, 1997, 6(2): 51-61. | |
19 | Yang H T, An F H, Zhao D D, et al. Biological characteristics responses of alfalfa (Medicago sativa L.) to soil salinity alkalinity. Soils and Crops, 2019, 8(3): 242-250. |
杨洪涛, 安丰华, 赵丹丹, 等. 土壤盐碱化对紫花苜蓿(Medicago sativa L.)生物学特征的影响. 土壤与作物, 2019, 8(3): 242-250. | |
20 | Tong S P, Liang Z W, Guan F C, et al. Biodiversity characteristics and biomass of artificial transplanting Leymus chinensis grassland in soda saline-alkali land of Songnen Plain. Acta Agrestia Sinica, 2019, 27(1): 22-27. |
仝淑萍, 梁正伟, 关法春, 等. 松嫩平原苏打盐碱地羊草人工移栽草地生物多样性特征和生物量. 草地学报, 2019, 27(1): 22-27. | |
21 | Cai Y P. Experimental guide for plant physiology. Beijing: China Agricultural University Press, 2014. |
蔡永萍. 植物生理学实验指导. 北京: 中国农业大学出版社, 2014. | |
22 | Ding Y F, Jin P, Liu P. Advances in gene expression, activity regulation and stress resistance of plant SOD. Biology Teaching, 2012, 37(7): 6-8. |
丁义峰, 靳萍, 刘萍. 植物SOD的基因表达、活性调节及抗逆作用研究进展. 生物学教学, 2012, 37(7): 6-8. | |
23 | Dou J H, Yu S X, Fan S L, et al. SOD and plant stress resistance. Molecular Plant Breeding, 2010, 8(2): 359-364. |
窦俊辉, 喻树迅, 范术丽, 等. SOD与植物胁迫抗性. 分子植物育种, 2010, 8(2): 359-364. | |
24 | Wang L. Research on salt tolerant peroxidases in wheat and arsenic resistant transgenic plant. Jinan: Shandong University, 2009. |
王乐. 山融3号小麦耐盐相关过氧化物酶基因及植物抗砷基因工程初步研究. 济南: 山东大学, 2009. | |
25 | Fu M Y. Biological and physiological-biochemical characteristics of high-yield insect-resistant transgenic Bt cotton “SCRC21”. Tai’an: Shandong Agricultural University, 2012. |
傅明焱. 转Bt基因抗虫棉鲁棉研21号高产的生物学和生理生化特性. 泰安: 山东农业大学, 2012. | |
26 | Wang C P, Chen J W, Qiao G X. Proline inhibits plant root growth through signal of auxin pathway in Arabidopsis thaliana. Plant Physiology Journal, 2017, 53(8): 1428-1434. |
王翠平, 陈建伟, 乔改霞. 脯氨酸通过影响生长素途径相关信号抑制拟南芥根的生长. 植物生理学报, 2017, 53(8): 1428-1434. | |
27 | Miao Y Y, Zhou T, Shi S L, et al. Effect of boron on migration and colonization by rhizobia and seedling growth in Medicago sativa. Acta Prataculturae Sinica, 2017, 26(4): 120-133. |
苗阳阳, 周彤, 师尚礼, 等. 硼对根瘤菌在紫花苜蓿体内运移和定殖及对幼苗生长的影响. 草业学报, 2017, 26(4): 120-133. | |
28 | Gao J Y. Diversity of bacteria associated with Dongxiang wild rice and isolation of plant promoting bacteria containing ACC deaminase activity. Nanchang: Jiangxi Normal University, 2017. |
高洁云. 东乡野生稻内生、根际细菌多样性及具ACC脱氨酶活性菌株筛选. 南昌: 江西师范大学, 2017. | |
29 | Xie J H. Studies on the improvement of saline-alkali soil and rice growth promotion by wild rice rhizosphere bacteria. Changchun: Jilin Agricultural University, 2020. |
谢金宏. 野生稻根际细菌改良盐碱地及水稻促生的研究. 长春: 吉林农业大学, 2020. | |
30 | Zhang Z, Yuen G Y. The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology, 2000, 90(4): 384-389. |
31 | Baldiris R, Acosta-Tapia N, Montes A, et al. Reduction of hexavalent chromium and detection of chromate reductase (ChrR) in Stenotrophomonas maltophilia. Molecules, 2018, 23(2): 406. |
[1] | Xiao-ting LIU, Tuo YAO. Screening, identification and characteristics of low-temperature-tolerant plant growth promoting rhizobacteria in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(8): 178-187. |
[2] | Jian-tao ZHAO, Ya-fei YUE, Qian-bing ZHANG, Chun-hui MA. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 24-34. |
[3] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[4] | Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis [J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208. |
[5] | Yi-chao CHEN, Xiao-ying SUN, Zhi-jie XIE, Pan ZHOU, Lu ZHANG, Xue-li GAO, Dong LI, Xiao-feng LIU. Screening of rhizosphere growth promoting bacteria and their application in tailings improvement [J]. Acta Prataculturae Sinica, 2022, 31(7): 50-63. |
[6] | Huan ZHANG, Yi-xiao MU, Gui-jie ZHANG. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage [J]. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
[7] | Hong-ren SUN, Xian-guo WANG, Yao-jun BU, Nan QIAO, Bo REN. Preliminary study of a sufficiency index of soil N and recommended N fertilizer application rates for alfalfa in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2022, 31(4): 32-42. |
[8] | Li-min GAO, Chun CHEN, Yi-xin SHEN. Effects of nitrogen and phosphorus fertilizer rates on forage dry matter yield and regrowth of alfalfa in seasonal cultivation systems [J]. Acta Prataculturae Sinica, 2022, 31(4): 43-52. |
[9] | Cheng-ming OU, Mei-qi ZHAO, Ming SUN, Pei-sheng MAO. Effects of ascorbic acid and salicylic acid pelleting on germination characteristics in alfalfa seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 93-101. |
[10] | Chang-chun TONG, Xiao-jing LIU, Yong WU, Ya-jiao ZHAO, Jing WANG. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency [J]. Acta Prataculturae Sinica, 2022, 31(3): 124-135. |
[11] | Yu-huan WU, Zi-kui WANG, Ya-nan LIU, Qian-hu MA. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping [J]. Acta Prataculturae Sinica, 2022, 31(3): 144-155. |
[12] | Li-ying LIU, Yu-shan JIA, Wen-qiang FAN, Qiang YIN, Qi-ming CHENG, Zhi-jun WANG. An investigation of the main environmental factors affecting the natural drying of alfalfa for hay, and hay quality [J]. Acta Prataculturae Sinica, 2022, 31(2): 121-132. |
[13] | Bin WANG, Yu-qi YANG, Man-you LI, Wang NI, Yi-rui HAI, Shun-xiang ZHANG, Xiu DONG, Jian LAN. The effect of sowing rate and row spacing on the yield and quality of alfalfa in the Ningxia Yellow River irrigation area [J]. Acta Prataculturae Sinica, 2022, 31(2): 147-158. |
[14] | Hui-hui ZHANG, Shang-li SHI, Bei WU, Zi-li LI, Xiao-long LI. A study of yield interactions in mixed sowings of alfalfa and three perennial grasses [J]. Acta Prataculturae Sinica, 2022, 31(2): 159-170. |
[15] | Jie BAI, Zhen-feng ZANG, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Ke-zhen WANG, Yang QU, Shu-bin HE. Lipid peroxidation and carbon and nitrogen characteristics in leaves and roots of alfalfa (Medicago sativa) in response to water and nitrogen addition [J]. Acta Prataculturae Sinica, 2022, 31(2): 213-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||