Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (9): 155-167.DOI: 10.11686/cyxb2021382
Jia-ming YAO(), Yue HE, Huan-huan HAO, Xin-ru HUANG, Jing ZHANG(), Bin XU
Received:
2021-10-28
Revised:
2021-11-29
Online:
2022-09-20
Published:
2022-08-12
Contact:
Jing ZHANG
Jia-ming YAO, Yue HE, Huan-huan HAO, Xin-ru HUANG, Jing ZHANG, Bin XU. Characterization and transcriptional regulation analysis of the LpPIL5 gene in perennial ryegrass[J]. Acta Prataculturae Sinica, 2022, 31(9): 155-167.
引物名称Primer name | 上游引物序列Forward primer sequence (5′-3′) | 下游引物序列Reverse primer sequence (5′-3′) |
---|---|---|
LpPIL5-CDS | CGCggatccATGAACCAATTCGTGCCT | CCCaagcttTCTCTTGTTCGGATGCG |
LpPIL5-qPCR | CCGACTCGCTCGACAAGGAC | GGAAGACGTCCGACAGCTCG |
LpeLF4A | AACTCAACTTGAAGTGTTGGAGTG | AGATCTGGTCCTGGAAAGAATATG |
Table 1 Primers used in the study
引物名称Primer name | 上游引物序列Forward primer sequence (5′-3′) | 下游引物序列Reverse primer sequence (5′-3′) |
---|---|---|
LpPIL5-CDS | CGCggatccATGAACCAATTCGTGCCT | CCCaagcttTCTCTTGTTCGGATGCG |
LpPIL5-qPCR | CCGACTCGCTCGACAAGGAC | GGAAGACGTCCGACAGCTCG |
LpeLF4A | AACTCAACTTGAAGTGTTGGAGTG | AGATCTGGTCCTGGAAAGAATATG |
溶液名称Solution name | 成分Ingredient |
---|---|
酶解液Enzyme solution | 10 mmol·L-1 MES,1.5%纤维素酶R10(Cellulase R10),0.75%离析酶R10(Macerozyme R10), 20 mmol·L-1 KCl,10 mmol·L-1 CaCl2,0.1% BSA,0.6 mol·L-1甘露醇Mannitol |
W5 溶液W5 solution | 154 mmol·L-1 NaCl,125 mmol·L-1 CaCl2,5 mmol·L-1 KCl,2 mmol·L-1 MES |
MMg溶液MMg solution | 0.4 mol·L-1甘露醇Mannitol,15 mmol·L-1 MgCl2,4 mmol·L-1 MES |
PEG 4000溶液PEG 4000 solution | 20% PEG 4000,10 mmol·L-1 CaCl2,0.3 mol·L-1甘露醇Mannitol |
Table 2 The solution used to extract and transform protoplasts
溶液名称Solution name | 成分Ingredient |
---|---|
酶解液Enzyme solution | 10 mmol·L-1 MES,1.5%纤维素酶R10(Cellulase R10),0.75%离析酶R10(Macerozyme R10), 20 mmol·L-1 KCl,10 mmol·L-1 CaCl2,0.1% BSA,0.6 mol·L-1甘露醇Mannitol |
W5 溶液W5 solution | 154 mmol·L-1 NaCl,125 mmol·L-1 CaCl2,5 mmol·L-1 KCl,2 mmol·L-1 MES |
MMg溶液MMg solution | 0.4 mol·L-1甘露醇Mannitol,15 mmol·L-1 MgCl2,4 mmol·L-1 MES |
PEG 4000溶液PEG 4000 solution | 20% PEG 4000,10 mmol·L-1 CaCl2,0.3 mol·L-1甘露醇Mannitol |
名称 Name | 序列 Sequence | 功能 Function | 个数Number |
---|---|---|---|
A-box | CCGTCC | 顺式调控元件Cis-acting regulatory element | 1 |
ABRE | TACGGTC | 脱落酸响应顺式作用元件Cis-acting element involved in the abscisic acid responsiveness | 2 |
ABRE | ACGTG | 脱落酸响应顺式作用元件Cis-acting element involved in the abscisic acid responsiveness | 2 |
MBS | CAACTG | MYB结合位点参与干旱诱导MYB binding site involved in drought-inducibility | 1 |
CGTCA-motif | CGTCA | 茉莉酸甲酯顺式作用元件Cis-acting regulatory element involved in the methyl jasmonate-responsiveness | 1 |
TGACG-motif | TGACG | 茉莉酸甲酯顺式作用元件Cis-acting regulatory element involved in the methyl jasmonate-responsiveness | 1 |
G-box | CACGAC | 光响应顺式作用元件Cis-acting regulatory element involved in light responsiveness | 1 |
G-box | TAACACGTAG | 光响应顺式作用元件Cis-acting regulatory element involved in light responsiveness | 1 |
G-box | CACGTC | 光响应顺式作用元件Cis-acting regulatory element involved in light responsiveness | 1 |
G-box | TACGTG | 光响应顺式作用元件Cis-acting regulatory element involved in light responsiveness | 1 |
CAAT-box | CAAT | 启动子和增强子区域的共同顺式作用元件Common cis-acting element in promoter and enhancer regions | 9 |
CAAT-box | CAAAT | 启动子和增强子区域的共同顺式作用元件Common cis-acting element in promoter and enhancer regions | 6 |
CAAT-box | CCAAT | 启动子和增强子区域的共同顺式作用元件Common cis-acting element in promoter and enhancer regions | 5 |
CAAT-box | TGCCAAC | 启动子和增强子区域的共同顺式作用元件Common cis-acting element in promoter and enhancer regions | 1 |
I-box | cCATATCCAAT | 部分光响应元件Part of a light responsive element | 1 |
BoxⅡ | ACACGTAGA | 部分光响应元件Part of a light responsive element | 1 |
TCCC-motif | TCTCCCT | 部分光响应元件Part of a light responsive element | 2 |
TCT-motif | TCTTAC | 部分光响应元件Part of a light responsive element | 2 |
TATA-box | ATATAT | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 1 |
TATA-box | TATAA | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 2 |
TATA-box | TATAAAA | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 2 |
TATA-box | TATAAA | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 2 |
TATA-box | TATA | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 3 |
Table 3 The analysis of cis-acting regulatory elements in the LpPIL5 promoter
名称 Name | 序列 Sequence | 功能 Function | 个数Number |
---|---|---|---|
A-box | CCGTCC | 顺式调控元件Cis-acting regulatory element | 1 |
ABRE | TACGGTC | 脱落酸响应顺式作用元件Cis-acting element involved in the abscisic acid responsiveness | 2 |
ABRE | ACGTG | 脱落酸响应顺式作用元件Cis-acting element involved in the abscisic acid responsiveness | 2 |
MBS | CAACTG | MYB结合位点参与干旱诱导MYB binding site involved in drought-inducibility | 1 |
CGTCA-motif | CGTCA | 茉莉酸甲酯顺式作用元件Cis-acting regulatory element involved in the methyl jasmonate-responsiveness | 1 |
TGACG-motif | TGACG | 茉莉酸甲酯顺式作用元件Cis-acting regulatory element involved in the methyl jasmonate-responsiveness | 1 |
G-box | CACGAC | 光响应顺式作用元件Cis-acting regulatory element involved in light responsiveness | 1 |
G-box | TAACACGTAG | 光响应顺式作用元件Cis-acting regulatory element involved in light responsiveness | 1 |
G-box | CACGTC | 光响应顺式作用元件Cis-acting regulatory element involved in light responsiveness | 1 |
G-box | TACGTG | 光响应顺式作用元件Cis-acting regulatory element involved in light responsiveness | 1 |
CAAT-box | CAAT | 启动子和增强子区域的共同顺式作用元件Common cis-acting element in promoter and enhancer regions | 9 |
CAAT-box | CAAAT | 启动子和增强子区域的共同顺式作用元件Common cis-acting element in promoter and enhancer regions | 6 |
CAAT-box | CCAAT | 启动子和增强子区域的共同顺式作用元件Common cis-acting element in promoter and enhancer regions | 5 |
CAAT-box | TGCCAAC | 启动子和增强子区域的共同顺式作用元件Common cis-acting element in promoter and enhancer regions | 1 |
I-box | cCATATCCAAT | 部分光响应元件Part of a light responsive element | 1 |
BoxⅡ | ACACGTAGA | 部分光响应元件Part of a light responsive element | 1 |
TCCC-motif | TCTCCCT | 部分光响应元件Part of a light responsive element | 2 |
TCT-motif | TCTTAC | 部分光响应元件Part of a light responsive element | 2 |
TATA-box | ATATAT | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 1 |
TATA-box | TATAA | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 2 |
TATA-box | TATAAAA | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 2 |
TATA-box | TATAAA | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 2 |
TATA-box | TATA | 转录开始的核心启动子元件Core promoter element around -30 of transcription start | 3 |
1 | Li H M, Lu X M, Gao Q H, et al. Effects of different light qualities on the growth, photosynthetic pigments and stomatal characteristics of okra (Abelmoschus esculentus) seedlings. Acta Prataculturae Sinica, 2016, 25(6): 62-70. |
李慧敏, 陆晓民, 高清海, 等. 不同光质对黄秋葵幼苗生长、光合色素和气孔特征的影响. 草业学报, 2016, 25(6): 62-70. | |
2 | Inoue K, Nishihama R, Kohchi T. Evolutionary origin of phytochrome responses and signaling in land plants. Plant, Cell & Environment, 2017, 40(11): 2502-2508. |
3 | Ulijasz A T, Cornilescu G, Cornilescu C C, et al. Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature, 2010, 463(7278): 250-254. |
4 | Tong Z, Zhao Y J, Wang T, et al. Photoreceptors and light-regulated development in plants. Acta Botanica Sinica, 2000, 42(2): 111-115. |
童哲, 赵玉锦, 王台, 等. 植物的光受体和光控发育研究. 植物学报, 2000, 42(2): 111-115. | |
5 | Toledo-Ortiz G, Enamul H, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell, 2003, 15(8): 1749-1770. |
6 | Leivar P, Quail P H. PIFs: Pivotal components in a cellular signaling hub. Trends in Plant Science, 2011, 16(1): 19-28. |
7 | Huq E. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. The EMBO Journal, 2014, 21(10): 2441-2450. |
8 | Leivar P, Monte E, Al-Sady B, et al. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. The Plant Cell, 2008, 20(2): 337-352. |
9 | Lucas M D, Davière J M, Rodríguez-Falcón M, et al. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451(7177): 480-484. |
10 | Hornitschek P, Lorrain S, Zoete V, et al. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. The EMBO Journal, 2009, 28(24): 3893-3902. |
11 | Martinez-Garcia J F, Huq E, Quail P H. Direct targeting of light signals to a promoter element-bound transcription factor. Science, 2000, 288(5467): 859-863. |
12 | Moon J, Zhu L, Shen H, et al. PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proceedings of the National Academy of Sciences, 2008, 105(27): 9433-9438. |
13 | Oh E, Kang H, Yamaguchi S, et al. Genome-wide analysis of genes targeted by phytochrome interacting factor 3-like 5 during seed germination in Arabidopsis. The Plant Cell, 2009, 21(2): 403-419. |
14 | Shin J, Park E, Choi G. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant Journal, 2007, 49(6): 981-994. |
15 | Schfer E, Nagy F. Photomorphogenesis in plants and bacteria. The Netherlands: Springer, 2006. |
16 | Alabadi B. Molecular interactions between light and hormone signaling to control plant growth. Plant Molecular Biology, 2009, 69(4): 409-417. |
17 | Paik I, Kathare P K, Kim J I, et al. Expanding roles of PIFs in signal integration from multiple processes. Molecular Plant, 2017, 8(10): 1035-1046. |
18 | Lee N, Choi G. Phytochrome-interacting factor from Arabidopsis to liverwort. Current Opinion in Plant Biology, 2017, 35:54-60. |
19 | Koini M A, Alvey L, Allen T, et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Current Biology, 2009, 19(5): 408-413. |
20 | Stavang J A, Gallego-Bartolomé J, Gómez M D, et al. Hormonal regulation of temperature-induced growth in Arabidopsis. Plant Journal for Cell & Molecular Biology, 2010, 60(4): 589-601. |
21 | Al-Sady B, Kikis E A, Monte E, et al. Mechanistic duality of transcription factor function in phytochrome signaling. Proceedings of the National Academy of Sciences of the United States, 2008, 105(6): 2232-2237. |
22 | Sibbett B. The role of phytochrome-interacting factor 3 in regulating growth and development in hexaploid wheat. Southampton: University of Southampton, 2018. |
23 | Yong G, Wu M, Zhang M, et al. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Molecular Biology, 2018, 97(4/5): 311-323. |
24 | Kudo M, Kidokoro S, Yoshida T, et al. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnology Journal, 2017, 15(4): 458-471. |
25 | Zhang Y Q, Liu Z J, Chen Y D, et al. Phytochrome interacting factor 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis. Plant Science, 2015, 237: 57-68. |
26 | Khanna R, Shen Y, Marion C M, et al. The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. The Plant Cell, 2007, 19(12): 3915-3929. |
27 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2002, 25(4): 402-408. |
28 | Huang L, Yan H, Jiang X, et al. Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions. PLoS One, 2014, 9(4): e93724. |
29 | Yu G, Cheng Q, Xie Z, et al. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation, and its application on interaction study between LpNOL and LpNYC1. Plant Methods, 2017, 13(1): 46. |
30 | Paik I, Huq E. Rapid examination of phytochrome-phytochrome interacting factor (PIF) interaction by in vitro coimmunoprecipitation assay. New York: Humana, 2019. |
31 | Nakamura Y, Kato T, Yamashino T, et al. Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa. Journal of the Agricultural Chemical Society of Japan, 2007, 71(5): 1183-1191. |
32 | Rosado D, Gramegna G, Cruz A, et al. Phytochrome interacting factors (PIFs) in Solanum lycopersicum: Diversity, evolutionary history and expression profiling during different developmental processes. PLoS One, 2016, 11(11): e0165929. |
33 | Pham V N, Kathare P K, Huq E. Phytochromes and phytochrome interacting factors. Plant Physiology, 2018, 176: 1025-1038. |
34 | Possart A, Xu T, Paik I, et al. Characterization of phytochrome interacting factors from the moss Physcomitrella patens illustrates conservation of phytochrome signaling modules in land plants. The Plant Cell, 2017, 29(2): 310-330. |
35 | Gao Y, Ren X, Qian J, et al. The phytochrome-interacting family of transcription factors in maize (Zea mays L.): Identification, evolution, and expression analysis. Acta Physiologiae Plantarum, 2019, 41(1): 1-7. |
36 | Wu G, Zhao Y, Shen R, et al. Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis. Plant Physiology, 2019, 181(2): 789-803. |
37 | Yu H, Tepperman J M, Fairchild C D, et al. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proceedings of the National Academy of Sciences, 2000, 97(24): 13419-13424. |
38 | Ni M, Tepperman J M, Quail P H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell, 1998, 95(5): 657-667. |
39 | Halliday K J, Hudson M, Min N, et al. Poc1: An Arabidopsis mutant perturbed in phytochrome signaling because of a T-DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proceedings of the National Academy of Sciences, 1999, 96(10): 5832-5837. |
40 | Wang X, Liu Y, Huai D, et al. Genome-wide identification of peanut PIF family genes and their potential roles in early pod development. Gene, 2021, 781(4): 145539. |
41 | Zhang K, Zheng T, Zhu X, et al. Genome-wide identification of PIFs in grapes (Vitis vinifera L.) and their transcriptional analysis under lighting/shading conditions. Genes, 2018, 9(9): 451. |
42 | Park E, Kim J, Lee Y, et al. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant & Cell Physiology, 2004, 45(8): 968-975. |
43 | Kao C Y, Cocciolone S M, Vasil K, et al. Localization and interaction of the cis-acting elements for abscisic acid, viviparous1, and light activation of the c1 gene of maize. The Plant Cell, 1996, 8(7): 1171-1179. |
44 | Gao C, Sun J, Wang C, et al. Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development. PLoS One, 2017, 12(7): e0181843. |
[1] | Qing ZHANG, Jing XING, Jia-ming YAO, Ting-chao YIN, Xin-ru HUANG, Yue HE, Jing ZHANG, Bin XU. The role of a cytokinin signaling pathway type-B ARR transcription factor, LpARR10, in cadmium tolerance of perennial ryegrass [J]. Acta Prataculturae Sinica, 2022, 31(5): 135-143. |
[2] | Dong-rong HAN, Tuo YAO, Hai-yun LI, Shu-chao HUANG, Yan-shan YANG, Ya-min GAO, Chang-ning LI, Yin-cui ZHANG. Effects of combined application of microbial fertilizer and chemical fertilizer on the growth of Lolium perenne [J]. Acta Prataculturae Sinica, 2022, 31(3): 136-143. |
[3] | Li-qing ZHAO, Xiang-yong PENG, Jun-xiang LIU, Jin-mei MAO, Zhen-yuan SUN. Effects of reduced glutathione on the growth and photosynthesis of perennial ryegrass under lead stress [J]. Acta Prataculturae Sinica, 2021, 30(9): 97-104. |
[4] | ZHOU Han-yang, SUN Peng-yue, YU Xin-rong, ZHOU Yu, ZHANG Zhi-wei, GAO Jin-zhu, ZHAO Dong-hao, LUO Yi-lan, HU Tian-ming, FU Juan-juan. Protective effects of Flavobacterium succinicans on perennial ryegrass under shade stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 137-143. |
[5] | MA Bi-hua, LIN Wei-hu, GAO Min, WANG Xing-di, TIAN Pei. Effects of salicylic acid and Epichloё on perennial ryegrass (Lolium perenne) under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(1): 135-144. |
[6] | TENG Ke, ZHANG Rui, TAN Peng-hui, YUE Yue-sen, FAN Xi-feng, WU Ju-ying. Molecular cloning, transcriptional activation, subcellular localization analysis and expression characterization of ZjERF1 from Zoysia japonica [J]. Acta Prataculturae Sinica, 2019, 28(6): 56-65. |
[7] | WANG Ri-ming, WANG Zhi-qiang, XIANG Zuo-xiang. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass [J]. Acta Prataculturae Sinica, 2019, 28(2): 168-178. |
[8] | DENG Jie, LI Fang, DUAN Ting-yu. Effects of AM fungus and grass endophyte on the infection of Lolium perenne by the pathogen Bipolaris sorokinianum in a greenhouse [J]. Acta Prataculturae Sinica, 2019, 28(12): 103-113. |
[9] | QIANG Zhi-quan, YANG Wen-bo, ZHANG Shuai, YU Zheng-yang, SHI Xue-ying, WANG Xin, ZHU Wei-ning, ZHANG Lin-sheng. Heterologous expression of WZY2-1 affects drought resistance of Arabidopsis plants [J]. Acta Prataculturae Sinica, 2018, 27(6): 92-99. |
[10] | WU Zhi-gang, WU Shu-jia, WANG Ying-chun, ZHENG Lin-lin. Advances in studies of calcium-dependent protein kinase (CDPK) in plants [J]. Acta Prataculturae Sinica, 2018, 27(1): 204-214. |
[11] | DONG Di, TENG Ke, YU An-Dong, TAN Peng-Hui, LIANG Xiao-Hong, HAN Lie-Bao. Cloning, subcellular localization and expression analysis of a novel phytoene synthase gene, ZmPSY, in Zoysia matrella [J]. Acta Prataculturae Sinica, 2017, 26(11): 69-76. |
[12] | WANG Ri-Ming, XIONG Xing-Yao. Effect of temperature stress on growth and metabolism in perennial ryegrass [J]. Acta Prataculturae Sinica, 2016, 25(8): 81-90. |
[13] | FENG Peng, SUN Li, SHEN Xiao-Hui, JIANG Cheng, LI Ru-Lai, LI Zeng-Jie, ZHENG Hai-Yan, ZHANG Hua, GUO Wei, HAN Xu-Dong, HONG Ya-Nan. Response and enrichment ability of perennial ryegrass under lead and cadmium stresses [J]. Acta Prataculturae Sinica, 2016, 25(1): 153-162. |
[14] | LIANG Xiao-Hong, AI Fei-Fan, ZHONG Tian-Xiu, HAN Lie-Bao. Cross adaptation under drought and low temperature stress in perennial ryegrass [J]. Acta Prataculturae Sinica, 2016, 25(1): 163-170. |
[15] | LI Jia-ling,LI Long-bao,LIAO Zong-wen,LIU Tian-zeng,ZHANG Ju-ming. The effect of different super absorbent polymer applying layer on turf growth and soil water and fertility [J]. Acta Prataculturae Sinica, 2014, 23(4): 61-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||