Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (2): 54-64.DOI: 10.11686/cyxb2022075
Previous Articles Next Articles
Wen-hua CHANG(), Wei-wei MA(), Guang LI, Guo-rong XU, Yong-chun LONG
Received:
2022-02-17
Revised:
2022-04-28
Online:
2023-02-20
Published:
2022-12-01
Contact:
Wei-wei MA
Wen-hua CHANG, Wei-wei MA, Guang LI, Guo-rong XU, Yong-chun LONG. Effects of swamp meadow degradation on soil nitrogen invertase activity in wet areas of Gahai[J]. Acta Prataculturae Sinica, 2023, 32(2): 54-64.
样地 Sample plot | 植被种类 Vegetation type | 植被盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·cm-2) | 基本情况 Basic conditions |
---|---|---|---|---|---|
HD | 地表仅有零星植被存在,风蚀严重。 Only sporadic vegetation exists on the surface, and wind erosion is serious. | ||||
ND | 藏嵩草 K. tibetica、蕨麻 P. anserina、早熟禾 P. annua | 96.25±5.32A | 16.71±2.98A | 355.90±174.64A | 枯落物和根系较多,有较浅的季节性积水。Lots of litter and roots, with shallow seasonal standing water. |
LD | 青藏苔草 C. moorcroftii、蕨麻P. anserina、棘豆 O. falcata | 86.34±7.36B | 13.02±2.24B | 293.02±143.93B | 有少量裸露,无积水。There is a small amount of dew, no standing water. |
MD | 矮生嵩草 Kobresia humilis、冷蒿 A. frigida、兰石草 L. tibetica | 45.33±13.34C | 7.43±0.97C | 185.73±134.90C | 植物种类较少,且出现一些毒草,地表轻微风蚀。There are few plant species, and some poisonous weeds appear, and the surface is slightly eroded by wind. |
Table 1 Basic information of the sample plot
样地 Sample plot | 植被种类 Vegetation type | 植被盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·cm-2) | 基本情况 Basic conditions |
---|---|---|---|---|---|
HD | 地表仅有零星植被存在,风蚀严重。 Only sporadic vegetation exists on the surface, and wind erosion is serious. | ||||
ND | 藏嵩草 K. tibetica、蕨麻 P. anserina、早熟禾 P. annua | 96.25±5.32A | 16.71±2.98A | 355.90±174.64A | 枯落物和根系较多,有较浅的季节性积水。Lots of litter and roots, with shallow seasonal standing water. |
LD | 青藏苔草 C. moorcroftii、蕨麻P. anserina、棘豆 O. falcata | 86.34±7.36B | 13.02±2.24B | 293.02±143.93B | 有少量裸露,无积水。There is a small amount of dew, no standing water. |
MD | 矮生嵩草 Kobresia humilis、冷蒿 A. frigida、兰石草 L. tibetica | 45.33±13.34C | 7.43±0.97C | 185.73±134.90C | 植物种类较少,且出现一些毒草,地表轻微风蚀。There are few plant species, and some poisonous weeds appear, and the surface is slightly eroded by wind. |
土层深度 Soil depth (cm) | 样地 Sample plot | 含水量 Moisture (m3·m-3) | 温度 Temperature (℃) | 全氮 Total nitrogen (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 微生物生物量氮 MBN (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | ND | 0.48±0.00Aa | 12.48±0.07Da | 4.24±0.38Aa | 12.59±1.29Aa | 1.49±0.20Bb | 49.43±4.13Aa |
LD | 0.40±0.00Ba | 13.80±0.04Ca | 3.53±0.08Ba | 10.09±0.65Aa | 3.18±0.21Ba | 22.62±4.45Ca | |
MD | 0.27±0.00Cc | 14.37±0.03Ba | 3.06±0.09Ba | 6.65±1.15Ba | 6.15±1.81ABa | 39.09±3.32Ba | |
HD | 0.10±0.00Da | 15.40±0.06Aa | 2.16±0.04Ca | 5.48±0.48Ba | 10.52±3.20Aa | 25.71±4.35Ca | |
10~20 | ND | 0.44±0.00Ab | 12.28±0.04Ca | 3.15±0.26Ab | 6.74±1.47Ab | 0.96±0.10Bb | 33.96±3.95Aab |
LD | 0.34±0.01Bb | 13.47±0.03Ba | 2.95±0.18ABb | 6.65±0.61Ab | 2.77±1.38Ba | 18.56±1.22Aa | |
MD | 0.30±0.00Cb | 13.58±0.02Bb | 2.43±0.20BCb | 5.95±1.82Aa | 8.60±1.33Aa | 22.68±8.04Aab | |
HD | 0.09±0.00Db | 14.61±0.02Ab | 1.96±0.06Cb | 6.41±1.74Aa | 9.65±2.73Aa | 19.93±4.50Aa | |
20~40 | ND | 0.35±0.00Ab | 11.60±0.01Cb | 2.70±0.11Ab | 6.47±0.56Ab | 3.47±0.41Ca | 21.77±6.30Ab |
LD | 0.43±0.00Ba | 12.53±0.02Bb | 2.50±0.16Ab | 6.18±1.06Ab | 3.59±1.01Ca | 18.70±4.02Aa | |
MD | 0.34±0.00Ca | 12.51±0.01Bc | 1.83±0.14Bc | 3.50±0.61Bb | 8.31±0.63Ba | 19.47±1.49Ab | |
HD | 0.11±0.00Da | 13.64±0.02Ac | 1.98±0.04Bb | 2.68±0.32Bb | 11.05±0.46Aa | 16.11±0.80Aa | |
0~40 | ND | 0.45±0.00A | 12.12±0.01C | 3.37±0.15A | 8.60±0.33A | 1.97±0.22B | 35.05±4.13A |
LD | 0.36±0.01B | 13.27±0.02B | 2.99±0.11B | 7.64±0.18A | 3.18±0.38B | 20.58±2.82C | |
MD | 0.27±0.00C | 13.49±0.02B | 2.44±0.01C | 5.36±0.92B | 7.69±0.79A | 27.08±2.50B | |
HD | 0.10±0.00D | 14.56±0.02A | 2.03±0.02D | 4.86±0.80B | 10.42±2.04A | 19.96±2.66C |
Table 2 Soil physicochemical properties of marsh meadows with different degrees of degradation
土层深度 Soil depth (cm) | 样地 Sample plot | 含水量 Moisture (m3·m-3) | 温度 Temperature (℃) | 全氮 Total nitrogen (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 微生物生物量氮 MBN (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | ND | 0.48±0.00Aa | 12.48±0.07Da | 4.24±0.38Aa | 12.59±1.29Aa | 1.49±0.20Bb | 49.43±4.13Aa |
LD | 0.40±0.00Ba | 13.80±0.04Ca | 3.53±0.08Ba | 10.09±0.65Aa | 3.18±0.21Ba | 22.62±4.45Ca | |
MD | 0.27±0.00Cc | 14.37±0.03Ba | 3.06±0.09Ba | 6.65±1.15Ba | 6.15±1.81ABa | 39.09±3.32Ba | |
HD | 0.10±0.00Da | 15.40±0.06Aa | 2.16±0.04Ca | 5.48±0.48Ba | 10.52±3.20Aa | 25.71±4.35Ca | |
10~20 | ND | 0.44±0.00Ab | 12.28±0.04Ca | 3.15±0.26Ab | 6.74±1.47Ab | 0.96±0.10Bb | 33.96±3.95Aab |
LD | 0.34±0.01Bb | 13.47±0.03Ba | 2.95±0.18ABb | 6.65±0.61Ab | 2.77±1.38Ba | 18.56±1.22Aa | |
MD | 0.30±0.00Cb | 13.58±0.02Bb | 2.43±0.20BCb | 5.95±1.82Aa | 8.60±1.33Aa | 22.68±8.04Aab | |
HD | 0.09±0.00Db | 14.61±0.02Ab | 1.96±0.06Cb | 6.41±1.74Aa | 9.65±2.73Aa | 19.93±4.50Aa | |
20~40 | ND | 0.35±0.00Ab | 11.60±0.01Cb | 2.70±0.11Ab | 6.47±0.56Ab | 3.47±0.41Ca | 21.77±6.30Ab |
LD | 0.43±0.00Ba | 12.53±0.02Bb | 2.50±0.16Ab | 6.18±1.06Ab | 3.59±1.01Ca | 18.70±4.02Aa | |
MD | 0.34±0.00Ca | 12.51±0.01Bc | 1.83±0.14Bc | 3.50±0.61Bb | 8.31±0.63Ba | 19.47±1.49Ab | |
HD | 0.11±0.00Da | 13.64±0.02Ac | 1.98±0.04Bb | 2.68±0.32Bb | 11.05±0.46Aa | 16.11±0.80Aa | |
0~40 | ND | 0.45±0.00A | 12.12±0.01C | 3.37±0.15A | 8.60±0.33A | 1.97±0.22B | 35.05±4.13A |
LD | 0.36±0.01B | 13.27±0.02B | 2.99±0.11B | 7.64±0.18A | 3.18±0.38B | 20.58±2.82C | |
MD | 0.27±0.00C | 13.49±0.02B | 2.44±0.01C | 5.36±0.92B | 7.69±0.79A | 27.08±2.50B | |
HD | 0.10±0.00D | 14.56±0.02A | 2.03±0.02D | 4.86±0.80B | 10.42±2.04A | 19.96±2.66C |
因素 Factor | 自由度 df | 土壤脲酶活性URE | 土壤蛋白酶活性PRO | 土壤硝酸还原酶活性NR | 土壤亚硝酸还原酶活性NIR | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
退化程度Degradation degree | 3 | 16.815 | <0.001 | 14.550 | <0.001 | 229.454 | <0.001 | 28.747 | <0.001 |
土层深度Soil depth | 2 | 37.007 | <0.001 | 165.988 | <0.001 | 15.041 | <0.001 | 69.107 | <0.001 |
退化×土层Degradation degree×soil depth | 6 | 1.166 | 0.357 | 0.045 | 0.868 | 26.295 | <0.001 | 5.578 | 0.001 |
Table 3 Variance analysis of soil nitrogen invertase activity under degradation degree and soil layer interaction
因素 Factor | 自由度 df | 土壤脲酶活性URE | 土壤蛋白酶活性PRO | 土壤硝酸还原酶活性NR | 土壤亚硝酸还原酶活性NIR | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
退化程度Degradation degree | 3 | 16.815 | <0.001 | 14.550 | <0.001 | 229.454 | <0.001 | 28.747 | <0.001 |
土层深度Soil depth | 2 | 37.007 | <0.001 | 165.988 | <0.001 | 15.041 | <0.001 | 69.107 | <0.001 |
退化×土层Degradation degree×soil depth | 6 | 1.166 | 0.357 | 0.045 | 0.868 | 26.295 | <0.001 | 5.578 | 0.001 |
项目 Item | 轴1 Axis 1 | 轴2 Axis 2 | 轴3 Axis 3 | 轴4 Axis 4 |
---|---|---|---|---|
土壤氮转化酶活性特征值Soil nitrogen invertase activity characteristic value | 0.7541 | 0.0472 | 0.0001 | 0.0000 |
土壤氮转化酶活性与环境相关性Soil nitrogen invertase activity and environmental correlation | 0.909 | 0.751 | 0.234 | 0.096 |
土壤氮转化酶活性累计解释量Cumulative interpretation of soil nitrogen invertase activity characteristics (%) | 75.41 | 80.13 | 80.15 | 80.15 |
土壤氮转化酶活性-环境累计解释量Soil nitrogen invertase activity cumulative environmental interpretation (%) | 94.09 | 99.98 | 100.00 | 100.00 |
典范特征值Canonical eigenvalue | 0.8015 | |||
总特征值Total eigenvalue | 1.0000 |
Table 4 Eigenvalues and interpretations of RDA ranking of soil nitrogen invertase activity
项目 Item | 轴1 Axis 1 | 轴2 Axis 2 | 轴3 Axis 3 | 轴4 Axis 4 |
---|---|---|---|---|
土壤氮转化酶活性特征值Soil nitrogen invertase activity characteristic value | 0.7541 | 0.0472 | 0.0001 | 0.0000 |
土壤氮转化酶活性与环境相关性Soil nitrogen invertase activity and environmental correlation | 0.909 | 0.751 | 0.234 | 0.096 |
土壤氮转化酶活性累计解释量Cumulative interpretation of soil nitrogen invertase activity characteristics (%) | 75.41 | 80.13 | 80.15 | 80.15 |
土壤氮转化酶活性-环境累计解释量Soil nitrogen invertase activity cumulative environmental interpretation (%) | 94.09 | 99.98 | 100.00 | 100.00 |
典范特征值Canonical eigenvalue | 0.8015 | |||
总特征值Total eigenvalue | 1.0000 |
环境因子Environmental factors | 排序Ranking | 解释量Explanatory quantity (%) | F | P |
---|---|---|---|---|
SWC | 1 | 67.1 | 69.4 | 0.002 |
NO3--N | 2 | 57.8 | 46.6 | 0.006 |
TEM | 3 | 43.3 | 38.2 | 0.024 |
TN | 4 | 39.8 | 21.2 | 0.028 |
MBN | 5 | 22.1 | 5.4 | 0.278 |
NH4+-N | 6 | 8.9 | 2.1 | 0.605 |
Table 5 Ranking results of importance of interpretation of soil physical and chemical properties
环境因子Environmental factors | 排序Ranking | 解释量Explanatory quantity (%) | F | P |
---|---|---|---|---|
SWC | 1 | 67.1 | 69.4 | 0.002 |
NO3--N | 2 | 57.8 | 46.6 | 0.006 |
TEM | 3 | 43.3 | 38.2 | 0.024 |
TN | 4 | 39.8 | 21.2 | 0.028 |
MBN | 5 | 22.1 | 5.4 | 0.278 |
NH4+-N | 6 | 8.9 | 2.1 | 0.605 |
1 | Sinsabaugh R L, Hill B H, Follstad S J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462(7274): 795-798. |
2 | Dunn C, Jones T G, Girard A, et al. Methodologies for extracellular enzyme assays from wetland soils. Wetlands, 2014, 34(1): 9-17. |
3 | Wang L D, Wang F L, Guo C X, et al. Progress of soil enzymology. Soil, 2016, 48(1): 12-21. |
王理德, 王方琳, 郭春秀, 等. 土壤酶学研究进展. 土壤, 2016, 48(1): 12-21. | |
4 | Liu C, Zhao G Y, Song Y Y, et al. Soil enzyme activity in wetland under the background of climate change: Research progress. Chinese Agricultural Science Bulletin, 2019, 35(33): 91-97. |
刘超, 赵光影, 宋艳宇, 等. 气候变化背景下湿地土壤酶活性研究进展. 中国农学通报, 2019, 35(33): 91-97. | |
5 | Xu G R, Ma W W, Song L C, et al. Characteristics of soil nitrogen content and enzyme activity in Gahai wetland under different vegetation degradation states. Acta Ecologica Sinica, 2020, 40(24): 8917-8927. |
徐国荣, 马维伟, 宋良翠, 等. 植被不同退化状态下尕海湿地土壤氮含量及酶活性特征. 生态学报, 2020, 40(24): 8917-8927. | |
6 | Wu J Q, Wang H Y, Li G, et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Scientific Reports, 2020, 10(1): 21271-21287. |
7 | Li H Y, Zhang J G, Yao T, et al. Soil nutrients, enzyme activities and ecological stoichiometry characteristic in degraded alpine grassland. Journal of Soil and Water Conservation, 2018, 32(5): 287-295. |
李海云, 张建贵, 姚拓, 等. 退化高寒草地土壤养分、酶活性及生态化学计量特征. 水土保持学报, 2018, 32(5): 287-295. | |
8 | Li J H, Yang G J, Wang S P. Vegetation and soil characteristics of degraded alpine meadows on the Qinghai-Tibet Plateau. Chinese Journal of Applied Ecology, 2020, 31(6): 2109-2118. |
李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征. 应用生态学报, 2020, 31(6): 2109-2118. | |
9 | Liu Y H. Study on soil enzyme activity of degraded alpine grassland in the source region of the Three Rivers. Jiangsu Agricultural Science, 2017, 45(6): 243-246. |
刘育红. 三江源区退化高寒草地土壤酶活性研究. 江苏农业科学, 2017, 45(6): 243-246. | |
10 | Jiang Y M, Shi S L, Tian Y L, et al. Characteristics of soil microorganism and soil enzyme activities in alpine meadows under different degrees of degradation. Journal of Soil and Water Conservation, 2017, 31(3): 244-249. |
蒋永梅, 师尚礼, 田永亮, 等. 高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征. 水土保持学报, 2017, 31(3): 244-249. | |
11 | Ma W W, Li G, Wu J H, et al. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma, 2020, 377: 114565. |
12 | Ma W W, Alhassan A R M, Wang Y S, et al. Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China. Nutrient Cycling in Agroecosystems, 2018, 112: 335-354. |
13 | Song L C, Ma W W, Li G, et al. Effect of temperature changes on nitrogen mineralization in soils with different degradation gradients in Gahai Wetland. Acta Prataculturae Sinica, 2021, 30(9): 27-37. |
宋良翠, 马维伟, 李广, 等. 温度变化对尕海湿地不同退化梯度土壤氮矿化的影响. 草业学报, 2021, 30(9): 27-37. | |
14 | Cao R, Wei X, Yang Y, et al. The effect of water table decline on plant biomass and species composition in the Zoige peatland: A four-year in situ field experiment. Agriculture, Ecosystems and Environment, 2017, 247: 389-395. |
15 | Ma W W, Li G, Shi W L, et al. Changes of plant biomass and species diversity in degradation process of gahai wetland in Gansu Province. Acta Agrestia Sinica, 2016, 24(5): 960-966. |
马维伟, 李广, 石万里, 等. 甘肃尕海湿地退化过程中植物生物量及物种多样性变化动态. 草地学报, 2016, 24(5): 960-966. | |
16 | Bao S D. Analysis of soil agriculture. Beijing: China Agriculture Press, 1999. |
鲍士旦. 土壤农业分析. 北京: 中国农业出版社, 1999. | |
17 | Guan S Y. Soil enzymes and their research methods. Beijing: Agricultural Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
18 | Wu Z J, Juan Y H, Chen L J, et al. An analytical method for detecting soil nitrate reductase activity, 101271060. Shenyang: Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, 2011. |
武志杰, 隽英华, 陈利军, 等. 一种检测土壤硝酸还原酶活性的分析方法, 101271060. 沈阳: 中国科学院沈阳应用生态研究所, 2011. | |
19 | Gao Y, Schumann M, Chen H, et al. Impacts of grazing intensity on soil carbon and nitrogen in an alpine meadow on the eastern Tibetan Plateau. Applied Ecology & Environmental Research, 2008, 6(2): 69-79. |
20 | Hu L, Wang C T, Wang G X, et al. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China. Acta Prataculturae Sinica, 2014, 23(3): 8-19. |
胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014, 23(3): 8-19. | |
21 | Su Y Z, Li Y L, Cui J Y, et al. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, Northern China. Catena, 2005, 59(3): 267-278. |
22 | Xu J J, Liu S Y H, Zhu X P, et al. Soil microorganism and enzymatic activity differences at various water gradients in swan lake alpine wetland of Bayanbulak grassland. Journal of Xinjiang Agricultural University, 2017, 40(5): 337-344. |
徐静静, 刘隋赟昊, 朱新萍, 等. 巴音布鲁克天鹅湖高寒湿地不同水分梯度土壤微生物及酶活性的差异. 新疆农业大学学报, 2017, 40(5): 337-344. | |
23 | Zhang Y, Liu C, Song A, et al. Relationship between soil physicochemical properties and soil enzyme activities in Huixian karst wetland system based on canonical correspondence analysis. Carsologica Sinica, 2016, 35(1): 11-18. |
张莹, 刘畅, 宋昂, 等. 基于典范对应分析的会仙岩溶湿地土壤理化性质与土壤酶活性关系研究. 中国岩溶, 2016, 35(1): 11-18. | |
24 | Ma W M, Liu C W, Zhou Q P, et al. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
马文明, 刘超文, 周青平, 等. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响. 草业学报, 2022, 31(1): 57-68. | |
25 | Liu Y J. Response of soil microbial community structure and function to water condition change in wetland. Nanchang: Nanchang University, 2017. |
刘亚军. 湿地土壤微生物群落结构和功能对水分条件变化的响应. 南昌: 南昌大学, 2017. | |
26 | Huang H L, Zong N, He N P, et al. Characteristics of soil enzyme stoichiometry along an altitude gradient on Qinghai-Tibet Plateau alpine meadow, China. Chinese Journal of Applied Ecology, 2019, 30(11): 3689-3696. |
黄海莉, 宗宁, 何念鹏, 等. 青藏高原高寒草甸不同海拔土壤酶化学计量特征. 应用生态学报, 2019, 30(11): 3689-3696. | |
27 | Wang F F, Xu H, Li T, et al. Effects and mechanisms of grazing on key processes of soil nitrogen cycling in grassland: A review. Chinese Journal of Applied Ecology, 2019, 30(10): 3277-3284. |
王芳芳, 徐欢, 李婷, 等. 放牧对草地土壤氮素循环关键过程的影响与机制研究进展. 应用生态学报, 2019, 30(10): 3277-3284. | |
28 | Saggar S, Jha N, Deslippe J, et al. Denitrification and N2O∶N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Science of The Total Environment, 2013, 465: 173-195. |
29 | Liu J G, Liu W G. Advances in microbial-mediated nitrogen cycling. Acta Agrestia Sinica, 2018, 26(2): 277-283. |
刘建国, 刘卫国. 微生物介导的氮循环过程研究进展. 草地学报, 2018, 26(2): 277-283. | |
30 | Ding X H. Soil microbial characteristics in wet meadows of Zhalong wetlands. Harbin: Northeast Forestry University, 2011. |
丁新华. 扎龙湿地湿草甸土壤微生物特性研究. 哈尔滨: 东北林业大学, 2011. | |
31 | Pan P, Wang C T, Hu L, et al. The synergetic responses of plant community and soil to the restorative succession of cultivated grassland. Ecology and Environmental Sciences, 2020, 29(12): 2355-2364. |
潘攀, 王长庭, 胡雷, 等. 植物群落和土壤对人工草地恢复演替的协同响应. 生态环境学报, 2020, 29(12): 2355-2364. | |
32 | Wang X Y, Yao B H, Zhang C J, et al. Seasonal changes of soil physicochemical properties and enzyme activity of “bare land” degraded meadow in Gannan. Acta Agrestia Sinica, 2021, 29(2): 220-227. |
王小燕, 姚宝辉, 张彩军, 等. 甘南“黑土滩”型退化草甸土壤理化特性及酶活性季节变化. 草地学报, 2021, 29(2): 220-227. | |
33 | Li L, Wang J J, Gao F, et al. Effects of freeze-thaw cycles on soil nitrogen invertase of four temperate forests. Journal of Yangzhou University(Agricultural and Life Science Edition), 2021, 42(1): 111-118. |
李龙, 王佳佳, 高峰, 等. 冻融循环对4种温带森林土壤氮转化酶的影响. 扬州大学学报(农业与生命科学版), 2021, 42(1): 111-118. | |
34 | Wu G L, Ren G H, Dong Q M, et al. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. CLEAN-Soil Air Water, 2014, 42(3): 319-323. |
35 | Huang Y F, Shu Y G, Xiao S Y, et al. Quantification of soil nutrient levels and enzyme activities in different grassland categories in Karst mountains. Acta Prataculturae Sinica, 2020, 29(6): 93-104. |
黄玙璠, 舒英格, 肖盛杨, 等. 喀斯特山区不同草地土壤养分与酶活性特征. 草业学报, 2020, 29(6): 93-104. | |
36 | Li Y H, Zhu H Q, Fang L Z, et al. Soil enzyme activity characteristics and impact factors under plant communities of the Ebinur Lake wetland. Acta Ecologica Sinica, 2020, 40(2): 549-559. |
李艳红, 朱海强, 方丽章, 等. 艾比湖湿地植物群落土壤酶活性特征及影响因素. 生态学报, 2020, 40(2): 549-559. | |
37 | Zhu X M, Liu M, Kou Y P, et al. Differential effects of N addition on the stoichiometry of microbes and extracellular enzymes in the rhizosphere and bulk soils of an alpine shrubland. Plant and Soil, 2020, 449(3): 285-301. |
38 | Tegeder M, Celine M D. Source and sink mechanisms of nitrogen transport and use. New Phytologist, 2018, 217(1): 35-53. |
39 | Fan S Y, Sun H, Yang J Y, et al. Variations in soil enzyme activities and microbial communities along an altitudinal gradient on the Eastern Qinghai-Tibetan Plateau. Forests, 2021, 12(6): 681-694. |
40 | Lipson D A, Schadt C W, Schmidt S K. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecology, 2002, 43(3): 307-314. |
41 | Sharma N, Kumar S. Nitrogen transformation rates in the Himalayan soils at different temperature and elevation conditions. Journal of Soils and Sediments, 2021, 21(1): 13-26. |
42 | Yin P S. Responses of soil enzyme activities and organic carbon distribution characteristics to warming and nitrogen application in alpine swamp meadows on the Tibetan Plateau. Lanzhou: Lanzhou Jiaotong University, 2020. |
尹鹏松. 青藏高原高寒沼泽草甸土壤酶活性与有机碳分布特征对增温与施氮的响应. 兰州: 兰州交通大学, 2020. | |
43 | Ma S Q, Wang Z W, Chen Y C, et al. Effect of soil organic matter chemical compositions on soil protease and urease activity in alpine grassland soils in Northern Xizang, China. Chinese Journal of Plant Ecology, 2021, 45(5): 516-527. |
马书琴, 汪子微, 陈有超, 等. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响. 植物生态学报, 2021, 45(5): 516-527. |
[1] | Feng HAN, Zhi-tao ZHANG, Xin ZHANG, Jian-hao WANG, Hao WANG. Legal process and governance of public rangelands: Experiences and implications from America [J]. Acta Prataculturae Sinica, 2022, 31(9): 220-232. |
[2] | Jian-zhen GE, Wen-hui FU, Lu ZHANG, Bao-jun LIN, Shuai ZHAO, Ma-ga-weng BAI, Jian-cun KOU. Degradation of carbendazim in orchard white clover silage and its effect on the microbial fermentative community [J]. Acta Prataculturae Sinica, 2022, 31(7): 64-75. |
[3] | Di ZHOU, Shuai YANG, Xin-xin ZHANG, Jing YUAN, Yan-xia GAO, Jian-guo LI, Bo WANG, Guang-sheng ZHOU, Ting-dong FU, Jun YE, Li-guo YANG, Guo-hua HUA. Effects of additive types and combinations on silage quality of whole-plant rape after harvesting and air-drying [J]. Acta Prataculturae Sinica, 2022, 31(4): 124-135. |
[4] | Lei ZHOU, Xue WEI, Chang-ting WANG, Peng-fei WU. Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2022, 31(3): 34-46. |
[5] | Dong-sheng GUO, Shao-xun TANG. In vivo degradation characteristics of dry matter and crude protein of four morphological fractions for five varieties maize harvested at two maturity stages [J]. Acta Prataculturae Sinica, 2022, 31(10): 178-188. |
[6] | Li GAO, Yong DING. Progress in research and practice of restoration of degraded grassland around the world [J]. Acta Prataculturae Sinica, 2022, 31(10): 189-205. |
[7] | Liang-cui SONG, Wei-wei MA, Guang LI, Shuai-nan LIU, Gang LU. Effect of temperature changes on nitrogen mineralization in soils with different degradation gradients in Gahai Wetland [J]. Acta Prataculturae Sinica, 2021, 30(9): 27-37. |
[8] | Xiong-xiong LI, Ting JIAO, Sheng-guo ZHAO, Wei-na QIN, Xue-mei GAO, Zheng-wen WANG, Jian-ping WU, Zhao-min LEI. Synergistic effect of oregano essential oil and organic cobalt on degradation characteristics of silage maize stalks and rumen fermentation of sheep [J]. Acta Prataculturae Sinica, 2021, 30(11): 191-202. |
[9] | Chang-rong WU, Sheng DAI, Long-fei LIANG, Wen-tao SUN, Chao PENG, Chao CHEN, Jun HAO. Effects of different additives on fermentation quality and protein degradation of Broussonetia papyrifera silage [J]. Acta Prataculturae Sinica, 2021, 30(10): 169-179. |
[10] | Tao-tao LIU, Si-wei WANG, Qiu-feng LI, Yu-feng CAO, Kun WANG, Li-juan WANG, Yi-zhao SHEN, Xue-li SUN, Mei-qi ZHANG, Jin-ling YAN, Jian-guo LI, Yan-xia GAO, Mei-mei WANG. Ruminal degradation characteristics of whole maize plant material before and after ensiling in beef cattle as determined in situ using the nylon bag method [J]. Acta Prataculturae Sinica, 2021, 30(1): 159-169. |
[11] | ZHAO Na, YANG Xue-hai, WEI Jin-tao, GUO Wan-zheng, CHEN Fang, ZHOU Guang-sheng, FU Ting-dong. Nutritional composition of forage rape and its rumen degradation characteristics in goats [J]. Acta Prataculturae Sinica, 2020, 29(5): 50-57. |
[12] | Cheng-yi LI, Xi-lai LI, Yuan-wu YANG, Hong-lin LI, De-fei LIANG. Effect of nitrogen addition on soil bacterial diversity in alpine degraded grasslands of differing slope [J]. Acta Prataculturae Sinica, 2020, 29(12): 161-170. |
[13] | LIU Ya-jing, MENG Zhong-ju, DANG Xiao-hong, SONG Wen-juan, ZHAI Bo. Allelopathic effects of Stellera chamaejasme on seed germination and seedling growth of alfalfa and two forage grasses [J]. Acta Prataculturae Sinica, 2019, 28(8): 130-138. |
[14] | DING Ai-qiang, XÜ Xian-ying, ZHANG Wen, LIU Jiang, FU Li, FU Gui-quan. Soil physicochemical and biological characteristics of Tamarix ramosissima Nebkhas in different degradation degree [J]. Acta Prataculturae Sinica, 2019, 28(2): 1-11. |
[15] | WANG Xue-xia, DONG Shi-kui, GAO Qing-zhu, ZHANG Yong, HU Guo-zheng, LUO Wen-rong. The rate of soil nitrogen transformation decreased by the degradation of alpine grasslands in the Qinghai Tibet Plateau [J]. Acta Prataculturae Sinica, 2018, 27(6): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||