Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (7): 61-71.DOI: 10.11686/cyxb2022348
Previous Articles Next Articles
Jin GUAN1(), Yi-di GUO1, Ling-yun LIU1, Shu-xia YIN1(), Ke TENG2()
Received:
2022-08-30
Revised:
2022-10-07
Online:
2023-07-20
Published:
2023-05-26
Contact:
Shu-xia YIN,Ke TENG
Jin GUAN, Yi-di GUO, Ling-yun LIU, Shu-xia YIN, Ke TENG. An efficient protocol for Zoysia japonica mesophyll protoplast isolation and transformation, and its application in subcellular localization and protein interaction analysis[J]. Acta Prataculturae Sinica, 2023, 32(7): 61-71.
引物名称Primer name | 序列Sequence (5'-3') |
---|---|
ZjNYC1-F | CTCGTCCCGACCTTATCCGC |
ZjNYC1-R | GGGCACGGGGTCATCCAG |
ZjNOL-F | CTCCACACAAGACTCCATTCG |
ZjNOL-R | GAAAAAGGAATGGTTCAAAACAGAT |
ZjZFN-F | ATGTCGTCCGCCATGGAATT |
ZjZFN-R | TCACGCGGTCATGAGGAGGC |
3302Y3-ZjNYC1-F | cctactagtcctagggacgtcaATGGCCGCCGCCGTCGCGCA |
3302Y3-ZjNYC1-R | tgctcaccatacgcgttacagaTGTGCCTGGAAGAGGACCAC |
3302Y3-ZjNOL-F | cctactagtcctagggacgtcaATGGCTGCCAGCGTCAGCATCG |
3302Y3-ZjNOL-R | tgctcaccatacgcgttacagaATCTTCAACAACATACTTAT |
3302Y3-ZjZFN-F | cacgggggactcttgaccatggtaATGTCGTCCGCCATGGAATT |
3302Y3-ZjZFN-R | ggtacacgcgtactagtcagatcCGCGGTCATGAGGAGGCGGG |
35S-pSPY-ZjNYC1-F | caggcctggcgcgccactagtgATGGCCGCCGCCGTCGCGCA |
35S-pSPY-ZjNYC1-R | ggtcgacagtactatcgatggaTGTGCCTGGAAGAGGACCAC |
35S-pSPY-ZjNOL-F | caggcctggcgcgccactagtgATGGCTGCCAGCGTCAGCATCG |
35S-pSPY-ZjNOL-R | ggtcgacagtactatcgatggaATCTTCAACAACATACTTAT |
Table 1 Primers used for gene cloning, expression analysis and plasmids construction
引物名称Primer name | 序列Sequence (5'-3') |
---|---|
ZjNYC1-F | CTCGTCCCGACCTTATCCGC |
ZjNYC1-R | GGGCACGGGGTCATCCAG |
ZjNOL-F | CTCCACACAAGACTCCATTCG |
ZjNOL-R | GAAAAAGGAATGGTTCAAAACAGAT |
ZjZFN-F | ATGTCGTCCGCCATGGAATT |
ZjZFN-R | TCACGCGGTCATGAGGAGGC |
3302Y3-ZjNYC1-F | cctactagtcctagggacgtcaATGGCCGCCGCCGTCGCGCA |
3302Y3-ZjNYC1-R | tgctcaccatacgcgttacagaTGTGCCTGGAAGAGGACCAC |
3302Y3-ZjNOL-F | cctactagtcctagggacgtcaATGGCTGCCAGCGTCAGCATCG |
3302Y3-ZjNOL-R | tgctcaccatacgcgttacagaATCTTCAACAACATACTTAT |
3302Y3-ZjZFN-F | cacgggggactcttgaccatggtaATGTCGTCCGCCATGGAATT |
3302Y3-ZjZFN-R | ggtacacgcgtactagtcagatcCGCGGTCATGAGGAGGCGGG |
35S-pSPY-ZjNYC1-F | caggcctggcgcgccactagtgATGGCCGCCGCCGTCGCGCA |
35S-pSPY-ZjNYC1-R | ggtcgacagtactatcgatggaTGTGCCTGGAAGAGGACCAC |
35S-pSPY-ZjNOL-F | caggcctggcgcgccactagtgATGGCTGCCAGCGTCAGCATCG |
35S-pSPY-ZjNOL-R | ggtcgacagtactatcgatggaATCTTCAACAACATACTTAT |
因素 Factors | Cellulase R10 (%, w/v) | Macerozyme R10 (%, w/v) | 酶解时间 Enzymolysis time (h) |
---|---|---|---|
1 | 1 | 0.5 | 4 |
2 | 2 | 1.0 | 5 |
3 | 3 | 1.5 | 6 |
4 | 4 | 2.0 | 7 |
Table 2 The enzyme ratio and enzymolysis time in the protoplast isolation experiment
因素 Factors | Cellulase R10 (%, w/v) | Macerozyme R10 (%, w/v) | 酶解时间 Enzymolysis time (h) |
---|---|---|---|
1 | 1 | 0.5 | 4 |
2 | 2 | 1.0 | 5 |
3 | 3 | 1.5 | 6 |
4 | 4 | 2.0 | 7 |
溶液名称 Solution name | 溶液配方 Solution composition | 储存条件 Storage | 用途 Usage |
---|---|---|---|
酶解液Enzyme solution | cellulase R10,macerozyme R10,甘露醇Mannitol,10 mmol·L-1 MES,pH 5.7,10 mmol·L-1 CaCl2,0.1% (w/v) BSA | 现用现配,室温Freshly prepared, room temperature | 制备原生质体Preparation of protoplasts |
W5溶液 W5 solution | 154 mmol·L-1 NaCl,125 mmol·L-1 CaCl2,5 mmol·L-1 KCl,2 mmol·L-1 MES,pH 5.7 | 4 ℃ | 释放和清洗原生质体Release and wash protoplasts |
MMG溶液 MMG solution | 0.4 mol·L-1 甘露醇Mannitol, 15 mmol·L-1 MgCl2, 4 mmol·L-1 MES,pH 5.7 | 4 ℃ | 重悬原生质体Resuspend protoplasts |
PEG溶液 PEG solution | 40% (w/v) PEG 4000, 0.2 mol·L-1 甘露醇Mannitol,0.1 mol·L-1 CaCl2 | 现用现配,室温Freshly prepared, room temperature | 介导原生质体转化Transform plasmids into protoplasts |
WI溶液 WI solution | 0.5 mol·L-1 甘露醇Mannitol,20 mmol·L-1 KCl,4 mmol·L-1 MES,pH 5.7 | 4 ℃ | 重悬转化体系Resuspend transformation system |
Table 3 Solution recipes for protoplast isolation and transformation
溶液名称 Solution name | 溶液配方 Solution composition | 储存条件 Storage | 用途 Usage |
---|---|---|---|
酶解液Enzyme solution | cellulase R10,macerozyme R10,甘露醇Mannitol,10 mmol·L-1 MES,pH 5.7,10 mmol·L-1 CaCl2,0.1% (w/v) BSA | 现用现配,室温Freshly prepared, room temperature | 制备原生质体Preparation of protoplasts |
W5溶液 W5 solution | 154 mmol·L-1 NaCl,125 mmol·L-1 CaCl2,5 mmol·L-1 KCl,2 mmol·L-1 MES,pH 5.7 | 4 ℃ | 释放和清洗原生质体Release and wash protoplasts |
MMG溶液 MMG solution | 0.4 mol·L-1 甘露醇Mannitol, 15 mmol·L-1 MgCl2, 4 mmol·L-1 MES,pH 5.7 | 4 ℃ | 重悬原生质体Resuspend protoplasts |
PEG溶液 PEG solution | 40% (w/v) PEG 4000, 0.2 mol·L-1 甘露醇Mannitol,0.1 mol·L-1 CaCl2 | 现用现配,室温Freshly prepared, room temperature | 介导原生质体转化Transform plasmids into protoplasts |
WI溶液 WI solution | 0.5 mol·L-1 甘露醇Mannitol,20 mmol·L-1 KCl,4 mmol·L-1 MES,pH 5.7 | 4 ℃ | 重悬转化体系Resuspend transformation system |
处理编号 Treatment No. | Cellulase R10 | Macerozyme R10 | 酶解时间 Enzymolysis time (h) | 原生质体产量 Protoplast yield (×106 个protoplasts·mL-1) | 原生质体活性 Protoplast activity (%) | 有效原生质体产量 Active protoplast yield (×106 个protoplasts·mL-1) |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 2.25 | 78.03 | 1.76 |
2 | 1 | 2 | 2 | 2.51 | 81.64 | 2.05 |
3 | 1 | 3 | 3 | 4.05 | 86.13 | 3.49 |
4 | 1 | 4 | 4 | 4.54 | 85.25 | 3.87 |
5 | 2 | 1 | 2 | 6.54 | 85.25 | 5.58 |
6 | 2 | 2 | 1 | 3.91 | 84.14 | 3.28 |
7 | 2 | 3 | 4 | 12.25 | 98.87 | 12.11 |
8 | 2 | 4 | 3 | 7.81 | 88.07 | 6.87 |
9 | 3 | 1 | 3 | 6.03 | 81.84 | 4.94 |
10 | 3 | 2 | 4 | 7.08 | 84.56 | 5.99 |
11 | 3 | 3 | 1 | 4.47 | 88.31 | 3.94 |
12 | 3 | 4 | 2 | 6.63 | 84.71 | 5.62 |
13 | 4 | 1 | 4 | 6.43 | 81.29 | 5.23 |
14 | 4 | 2 | 3 | 6.08 | 85.16 | 5.18 |
15 | 4 | 3 | 2 | 6.63 | 90.11 | 5.97 |
16 | 4 | 4 | 1 | 5.25 | 85.94 | 4.52 |
原生质体产量 Protoplast yield (×106个protoplasts·mL-1) | K1 | 3.34 | 5.32 | 3.97 | ||
K2 | 7.63 | 4.90 | 5.58 | |||
K3 | 6.05 | 6.85 | 5.99 | |||
K4 | 6.10 | 6.06 | 7.58 | |||
范围Range | 4.29 | 1.53 | 3.61 | |||
排序Rank | cellulase R10>酶解时间Enzymolysis time>macerozyme R10 | |||||
原生质体活性 Protoplast activity (%) | K1 | 82.76 | 81.60 | 84.10 | ||
K2 | 89.08 | 83.87 | 85.43 | |||
K3 | 84.85 | 90.85 | 85.30 | |||
K4 | 85.62 | 85.99 | 87.49 | |||
范围Range | 6.32 | 9.25 | 2.07 | |||
排序Rank | macerozyme R10>cellulase R10>酶解时间Enzymolysis time | |||||
有效原生质体产量 Active protoplast yield (×106个protoplasts·mL-1) | K1 | 2.79 | 4.38 | 3.38 | ||
K2 | 6.96 | 4.13 | 4.80 | |||
K3 | 5.12 | 6.38 | 5.12 | |||
K4 | 5.23 | 5.22 | 6.80 | |||
范围Range | 4.17 | 2.00 | 3.42 | |||
排序Rank | cellulase R10>酶解时间Enzymolysis time>macerozyme R10 |
Table 4 Orthogonal experiment of three factors affecting the efficiency of protoplast isolation
处理编号 Treatment No. | Cellulase R10 | Macerozyme R10 | 酶解时间 Enzymolysis time (h) | 原生质体产量 Protoplast yield (×106 个protoplasts·mL-1) | 原生质体活性 Protoplast activity (%) | 有效原生质体产量 Active protoplast yield (×106 个protoplasts·mL-1) |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 2.25 | 78.03 | 1.76 |
2 | 1 | 2 | 2 | 2.51 | 81.64 | 2.05 |
3 | 1 | 3 | 3 | 4.05 | 86.13 | 3.49 |
4 | 1 | 4 | 4 | 4.54 | 85.25 | 3.87 |
5 | 2 | 1 | 2 | 6.54 | 85.25 | 5.58 |
6 | 2 | 2 | 1 | 3.91 | 84.14 | 3.28 |
7 | 2 | 3 | 4 | 12.25 | 98.87 | 12.11 |
8 | 2 | 4 | 3 | 7.81 | 88.07 | 6.87 |
9 | 3 | 1 | 3 | 6.03 | 81.84 | 4.94 |
10 | 3 | 2 | 4 | 7.08 | 84.56 | 5.99 |
11 | 3 | 3 | 1 | 4.47 | 88.31 | 3.94 |
12 | 3 | 4 | 2 | 6.63 | 84.71 | 5.62 |
13 | 4 | 1 | 4 | 6.43 | 81.29 | 5.23 |
14 | 4 | 2 | 3 | 6.08 | 85.16 | 5.18 |
15 | 4 | 3 | 2 | 6.63 | 90.11 | 5.97 |
16 | 4 | 4 | 1 | 5.25 | 85.94 | 4.52 |
原生质体产量 Protoplast yield (×106个protoplasts·mL-1) | K1 | 3.34 | 5.32 | 3.97 | ||
K2 | 7.63 | 4.90 | 5.58 | |||
K3 | 6.05 | 6.85 | 5.99 | |||
K4 | 6.10 | 6.06 | 7.58 | |||
范围Range | 4.29 | 1.53 | 3.61 | |||
排序Rank | cellulase R10>酶解时间Enzymolysis time>macerozyme R10 | |||||
原生质体活性 Protoplast activity (%) | K1 | 82.76 | 81.60 | 84.10 | ||
K2 | 89.08 | 83.87 | 85.43 | |||
K3 | 84.85 | 90.85 | 85.30 | |||
K4 | 85.62 | 85.99 | 87.49 | |||
范围Range | 6.32 | 9.25 | 2.07 | |||
排序Rank | macerozyme R10>cellulase R10>酶解时间Enzymolysis time | |||||
有效原生质体产量 Active protoplast yield (×106个protoplasts·mL-1) | K1 | 2.79 | 4.38 | 3.38 | ||
K2 | 6.96 | 4.13 | 4.80 | |||
K3 | 5.12 | 6.38 | 5.12 | |||
K4 | 5.23 | 5.22 | 6.80 | |||
范围Range | 4.17 | 2.00 | 3.42 | |||
排序Rank | cellulase R10>酶解时间Enzymolysis time>macerozyme R10 |
指标 Index | 原生质体产量 Protoplast yield | 原生质体活性 Protoplast activity |
---|---|---|
原生质体活性Protoplast activity | 0.774 | |
有效原生质体产量 Active protoplast yield | 0.993 | 0.830 |
Table 5 The correlation between the indexes of protoplast isolation
指标 Index | 原生质体产量 Protoplast yield | 原生质体活性 Protoplast activity |
---|---|---|
原生质体活性Protoplast activity | 0.774 | |
有效原生质体产量 Active protoplast yield | 0.993 | 0.830 |
1 | Ueki S, Lacroix B, Krichevsky A, et al. Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nature Protocols, 2009, 4(1): 71-77. |
2 | Song G Q, Sink K C. Optimizing shoot regeneration and transient expression factors for Agrobacterium tumefaciens transformation of sour cherry (Prunus cerasus L.) cultivar Montmorency. Scientia Horticulturae, 2005, 106(1): 60-69. |
3 | Manavella P A, Chan R L. Transient transformation of sunflower leaf discs via an Agrobacterium-mediated method: Applications for gene expression and silencing studies. Nature Protocols, 2009, 4(11): 1699-1707. |
4 | Andrieu A, Breitler J C, Siré C, et al. An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice, 2012, 5(1): 1-12. |
5 | Yoo S, Cho Y, Sheen J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2007, 2: 1565-1572. |
6 | Cao J, Yao D, Lin F, et al. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: A valuable tool for signal transduction study in maize. Acta Physiologiae Plantarum, 2014, 36(5): 1271-1281. |
7 | Yu C, Wang L, Chen C, et al. Protoplast: A more efficient system to study nucleo-cytoplasmic interactions. Biochemical and Biophysical Research Communications, 2014, 450(4): 1575-1580. |
8 | Zhang Y, Su J, Duan S, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 2011, 7(1): 30. |
9 | Yu G, Cheng Q, Xie Z, et al. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation, and its application on interaction study between LpNOL and LpNYC1. Plant Methods, 2017, 13(1): 46. |
10 | Ma W, Yi F, Xiao Y, et al. Isolation of leaf mesophyll protoplasts optimized by orthogonal design for transient gene expression in Catalpa bungei. Scientia Horticulturae, 2020, 274: 109684. |
11 | Rezazadeh R, Niedz R P. Protoplast isolation and plant regeneration of guava (Psidium guajava L.) using experiments in mixture-amount design. Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 122(3): 585-604. |
12 | Yao L, Liao X, Gan Z, et al. Protoplast isolation and development of a transient expression system for sweet cherry (Prunus avium L.). Scientia Horticulturae, 2016, 209: 14-21. |
13 | Iguti S. Effects of mannitol on protoplasts of Saccharomyces cerevisiae. Plant and Cell Physiology, 1968, 9(3): 573-576. |
14 | Hong S Y, Seo P J, Cho S H, et al. Preparation of leaf mesophyll protoplasts for transient gene expression in Brachypodium distachyon. Journal of Plant Biology, 2012, 55(5): 390-397. |
15 | Wang H, Wang W, Zhan J, et al. An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavonoids biosynthesis enzymes. Scientia Horticulturae, 2015, 191: 82-89. |
16 | Wang H, Wang W, Li H, et al. Expression and tissue and subcellular localization of anthocyanidin synthase (ANS) in grapevine. Protoplasma, 2011, 248(2): 267-279. |
17 | Tan B, Xu M, Chen Y, et al. Transient expression for functional gene analysis using Populus protoplasts. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 114(1): 11-18. |
18 | Weinthal D, Tzfira T. Imaging protein-protein interactions in plant cells by bimolecular fluorescence complementation assay. Trends in Plant Science, 2009, 14(2): 59-63. |
19 | Pitzschke A, Persak H. Poinsettia protoplasts-a simple, robust and efficient system for transient gene expression studies. Plant Methods, 2012, 8(1): 14. |
20 | Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiology, 2001, 127(4): 1466-1475. |
21 | De Sutter V, Vanderhaeghen R, Tilleman S, et al. Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant Journal, 2005, 44(6): 1065-1076. |
22 | Bargmann B O, Marshall-Colon A, Efroni I, et al. TARGET: A transient transformation system for genome-wide transcription factor target discovery. Molecular Plant, 2013, 6(3): 978. |
23 | Ping H, Libo S, Jen S. The use of protoplasts to study innate immune responses. Methods in Molecular Biology (Clifton, NJ), 2007, 354: 1-9. |
24 | Zong Y, Song Q, Li C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 2018, 36(10): 950-953. |
25 | Rathnam C, Chollet R. Photosynthetic and photorespiratory carbon metabolism in mesophyll protoplasts and chloroplasts isolated from isogenic diploid and tetraploid cultivars of ryegrass (Lolium perenne L.). Plant Physiology, 1980, 65(3): 489-494. |
26 | Yanagisawa S, Sheen J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell, 1998, 10(1): 75-89. |
27 | Augustynowicz J, Lekka M, Burda K, et al. Correlation between chloroplast motility and elastic properties of tobacco mesophyll protoplasts. Acta Physiologiae Plantarum, 2001, 23(3): 291-302. |
28 | Augustynowicz J, Krzeszowiec W, Gabrys H. Acquisition of plastid movement responsiveness to light during mesophyll cell differentiation. International Journal of Developmental Biology, 2009, 53(1): 121-127. |
29 | Locatelli F, Vannini C, Magnani E, et al. Efficiency of transient transformation in tobacco protoplasts is independent of plasmid amount. Plant Cell Reports, 2003, 21(9): 865-871. |
30 | Tanaka H, Hirakawa H, Kosugi S, et al. Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Research, 2016, 23(2): 171-180. |
31 | Guan J, Teng K, Yue Y, et al. Zoysia japonica chlorophyll b reductase gene NOL participates in chlorophyll degradation and photosynthesis. Frontiers in Plant Science, 2022, 13(2022): 906018. |
32 | Teng K, Tan P, Guan J, et al. Functional characterization of the chlorophyll b reductase gene NYC1 associated with chlorophyll degradation and photosynthesis in Zoysia japonica. Environmental and Experimental Botany, 2021, 191(2021): 104607. |
33 | Marion J, Bach L, Bellec Y, et al. Systematic analysis of protein subcellular localization and interaction using high‐throughput transient transformation of Arabidopsis seedlings. Plant Journal, 2008, 56(1): 169-179. |
34 | Teng K, Tan P, Guo W, et al. Heterologous expression of a novel Zoysia japonica C2H2 zinc finger gene, ZjZFN1, improved salt tolerance in Arabidopsis. Frontiers in Plant Science, 2018, 9(2018): 1159. |
35 | Guan J, Yin S, Yue Y, et al. Single-molecule long-read sequencing analysis improves genome annotation and sheds new light on the transcripts and splice isoforms of Zoysia japonica. BMC Plant Biology, 2022, 22(1): 1-17. |
36 | Jia N, Liu X, Gao H. A DNA2 homolog is required for DNA damage repair, cell cycle regulation, and meristem maintenance in plants. Plant Physiology, 2016, 171(1): 318-333. |
37 | Larkin P J. Purification and viability determinations of plant protoplasts. Planta, 1976, 128(3): 213-216. |
38 | Guo J, Morrell-Falvey J L, Labbé J L, et al. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS ONE, 2012, 7(9): e44908. |
39 | Patton A J, Reicher Z J. Zoysiagrass species and genotypes differ in their winter injury and freeze tolerance. Crop Science, 2007, 47(4): 1619-1627. |
40 | Sakuraba Y, Schelbert S, ParkS Y, et al. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell, 2012, 24(2): 507-518. |
41 | Sato Y, Morita R, Kusaba S, et al. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant Journal, 2010, 57(1): 120-131. |
[1] | Jia-ming YAO, Huan-huan HAO, Jing ZHANG, Bin XU. The use of the tRNA-sgRNA/Cas9 system for gene editing in perennial ryegrass protoplasts [J]. Acta Prataculturae Sinica, 2023, 32(4): 129-141. |
[2] | Jia-ming YAO, Yue HE, Huan-huan HAO, Xin-ru HUANG, Jing ZHANG, Bin XU. Characterization and transcriptional regulation analysis of the LpPIL5 gene in perennial ryegrass [J]. Acta Prataculturae Sinica, 2022, 31(9): 155-167. |
[3] | TENG Ke, ZHANG Rui, TAN Peng-hui, YUE Yue-sen, FAN Xi-feng, WU Ju-ying. Molecular cloning, transcriptional activation, subcellular localization analysis and expression characterization of ZjERF1 from Zoysia japonica [J]. Acta Prataculturae Sinica, 2019, 28(6): 56-65. |
[4] | QIANG Zhi-quan, YANG Wen-bo, ZHANG Shuai, YU Zheng-yang, SHI Xue-ying, WANG Xin, ZHU Wei-ning, ZHANG Lin-sheng. Heterologous expression of WZY2-1 affects drought resistance of Arabidopsis plants [J]. Acta Prataculturae Sinica, 2018, 27(6): 92-99. |
[5] | WU Zhi-gang, WU Shu-jia, WANG Ying-chun, ZHENG Lin-lin. Advances in studies of calcium-dependent protein kinase (CDPK) in plants [J]. Acta Prataculturae Sinica, 2018, 27(1): 204-214. |
[6] | QI Ze-Wen, SUN Xin-Bo, FAN Bo, ZHANG Xue, YUAN Jian-Bo, HAN Lie-Bao. Establishment of a gene transient expression system mediated by polyethylene glycol in switchgrass (Panicum virgatum) mesophyll protoplasts [J]. Acta Prataculturae Sinica, 2017, 26(9): 113-120. |
[7] | DONG Di, TENG Ke, YU An-Dong, TAN Peng-Hui, LIANG Xiao-Hong, HAN Lie-Bao. Cloning, subcellular localization and expression analysis of a novel phytoene synthase gene, ZmPSY, in Zoysia matrella [J]. Acta Prataculturae Sinica, 2017, 26(11): 69-76. |
[8] |
YU Le, LIU Yong-hai, ZHOU Li-ping, LIANG Guo-qiu.
A study on the changes of ascorbic acid and related physiological indexes in different cultivars of Zoysia under drought stress [J]. Acta Prataculturae Sinica, 2013, 22(4): 106-115. |
[9] | CHEN Ting-ting, YANG Qing-chuan, DING Wang, KANG Jun-mei, ZHANG Tie-jun, ZHANG Xin-quan. Cloning and subcellular localization of a WRKY transcription factor gene of Medicago sativa [J]. Acta Prataculturae Sinica, 2012, 21(4): 159-167. |
[10] | WANG Dan, XUAN Ji-ping, GUO Hai-lin, LIU Jian-xiu. Seasonal changes of freezing tolerance and its relationship to the contents of carbohydrates, proline, and soluble protein of Zoysia [J]. Acta Prataculturae Sinica, 2011, 20(4): 98-107. |
[11] | WANG Zhou, ZONG Jun-qin, XUAN Ji-ping, GUO Ai-gui, LIU Jian-xiu. Cloning and sequence analysis of full-length cDNA of an actin gene from zoysia grass (Zoysia japonica) [J]. Acta Prataculturae Sinica, 2010, 19(6): 154-163. |
[12] | ZHAO Xiao-qiang, MA Hui-ling, LIN Dong, ZHOU Wan-hai, WU Xiang. Culture and plant regeneration of protoplasts from embryogenic calli of Nuglade (Poa pratensis) [J]. Acta Prataculturae Sinica, 2010, 19(2): 55-60. |
[13] | MA Chun-hui, HAN Jian-guo, SUN Jie-feng, WANG Dong. A study on the changes of physiology and biochemistry during zoysiagrass seed development [J]. Acta Prataculturae Sinica, 2009, 18(6): 174-179. |
[14] | WANG Ying-hua, CHEN Gang, JIA Jing-fen, HAO Jian-guo. Protoplast culture and plant regeneration of Zygophyllum xanthoxylum [J]. Acta Prataculturae Sinica, 2009, 18(3): 110-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||