Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (4): 129-141.DOI: 10.11686/cyxb2022180
Jia-ming YAO(), Huan-huan HAO, Jing ZHANG, Bin XU()
Received:
2022-04-20
Revised:
2022-06-27
Online:
2023-04-20
Published:
2023-01-29
Contact:
Bin XU
Jia-ming YAO, Huan-huan HAO, Jing ZHANG, Bin XU. The use of the tRNA-sgRNA/Cas9 system for gene editing in perennial ryegrass protoplasts[J]. Acta Prataculturae Sinica, 2023, 32(4): 129-141.
引物Primer | 引物序列Primer sequence (5′-3′) |
---|---|
S1F | TTGCAGTATGGGCCGGCCCATTACG |
S1R | ACGTTGTAAAACGACGGCCAGTGCC |
S2F | CCATGATTACGAATTCGAGCTCGGTACCCGG |
S2R | CTGCACATCTGATTCCTCCAAGATCCAT |
F1 | CTCCGTTTTACCTGTGGAATC |
R1 | |
F2 | |
R2 | CGGAGGAAAATTCCATCCAC |
F3 | GGCTCGTATGTTGTGTGG |
R3 | |
F4 | |
F5 | TTCAGAGGTCTCTACCGTGGAATCGGCAGCAAA |
R5 | TTCAGAGGTCTCA |
F6 | GAGGTCTCG |
R6 | AGCGTGGGTCTCGCTCGTCCATCCACTCCAAGC |
F7 | GCGAGCCTTATAAGCAG |
R7 | GCTGAGATAACGAGCCAA |
Table 1 Primers used in this study
引物Primer | 引物序列Primer sequence (5′-3′) |
---|---|
S1F | TTGCAGTATGGGCCGGCCCATTACG |
S1R | ACGTTGTAAAACGACGGCCAGTGCC |
S2F | CCATGATTACGAATTCGAGCTCGGTACCCGG |
S2R | CTGCACATCTGATTCCTCCAAGATCCAT |
F1 | CTCCGTTTTACCTGTGGAATC |
R1 | |
F2 | |
R2 | CGGAGGAAAATTCCATCCAC |
F3 | GGCTCGTATGTTGTGTGG |
R3 | |
F4 | |
F5 | TTCAGAGGTCTCTACCGTGGAATCGGCAGCAAA |
R5 | TTCAGAGGTCTCA |
F6 | GAGGTCTCG |
R6 | AGCGTGGGTCTCGCTCGTCCATCCACTCCAAGC |
F7 | GCGAGCCTTATAAGCAG |
R7 | GCTGAGATAACGAGCCAA |
步骤Steps | 反应组分Reaction components | 组分名称Component name | 体积Volume (μL) |
---|---|---|---|
PCR组分 Components of the PCR | PCR缓冲液PCR buffer | 2×Phanta Max buffer | 15.0 |
DRT | dNTP Mix (10 mmol·L-1) | 0.6 | |
模板Template | POT/PT (100 ng·L-1) | 1.0 | |
上游引物Forward primer | F1/F2/F3/F4 (10 μmol·L-1) | 1.2 | |
下游引物Reverse primer | R1/R2/R3/R2 (10 μmol·L-1) | 1.2 | |
DNA聚合酶DNA polymerase | Phanta Max Super-Fidelity DNA polymerase | 0.6 | |
双蒸水Double distilled water | ddH2O | 10.4 | |
共计Total | 30.0 | ||
重叠式PCR Overlapping PCR | PCR缓冲液PCR buffer | 2×Phanta Max buffer | 15.0 |
DRT | dNTP Mix (10 mmol·L-1) | 0.6 | |
模板Template | 产物1、产物2/产物3、产物4 Product 1, product 2/product 3, product 4 | 1.0+1.0 | |
上游引物Forward primer | F5/F6 (10 μmol·L-1) | 1.2 | |
下游引物Reverse primer | R5/R6 (10 μmol·L-1) | 1.2 | |
DNA聚合酶DNA polymerase | Phanta Max Super-Fidelity DNA polymerase | 0.6 | |
双蒸水Double distilled water | ddH2O | 9.4 | |
共计Total | 30.0 | ||
金门组装反应 Golden gate assembly | 缓冲液Buffer | 10×CutSmart | 1.0 |
10×T4 DNA ligase buffer | 1.0 | ||
连接产物Products for connection | 产物5 Product 5 | 2.5 | |
产物6 Product 6 | 2.5 | ||
表达载体Expression vector | pYLCRISPR Cas9Pubi-H | 2.0 | |
限制性内切酶Restriction enzyme | Bsa I | 0.5 | |
连接酶Ligase | T4 DNA ligase | 0.5 | |
共计Total | 10.0 |
Table 2 PCR reaction mix
步骤Steps | 反应组分Reaction components | 组分名称Component name | 体积Volume (μL) |
---|---|---|---|
PCR组分 Components of the PCR | PCR缓冲液PCR buffer | 2×Phanta Max buffer | 15.0 |
DRT | dNTP Mix (10 mmol·L-1) | 0.6 | |
模板Template | POT/PT (100 ng·L-1) | 1.0 | |
上游引物Forward primer | F1/F2/F3/F4 (10 μmol·L-1) | 1.2 | |
下游引物Reverse primer | R1/R2/R3/R2 (10 μmol·L-1) | 1.2 | |
DNA聚合酶DNA polymerase | Phanta Max Super-Fidelity DNA polymerase | 0.6 | |
双蒸水Double distilled water | ddH2O | 10.4 | |
共计Total | 30.0 | ||
重叠式PCR Overlapping PCR | PCR缓冲液PCR buffer | 2×Phanta Max buffer | 15.0 |
DRT | dNTP Mix (10 mmol·L-1) | 0.6 | |
模板Template | 产物1、产物2/产物3、产物4 Product 1, product 2/product 3, product 4 | 1.0+1.0 | |
上游引物Forward primer | F5/F6 (10 μmol·L-1) | 1.2 | |
下游引物Reverse primer | R5/R6 (10 μmol·L-1) | 1.2 | |
DNA聚合酶DNA polymerase | Phanta Max Super-Fidelity DNA polymerase | 0.6 | |
双蒸水Double distilled water | ddH2O | 9.4 | |
共计Total | 30.0 | ||
金门组装反应 Golden gate assembly | 缓冲液Buffer | 10×CutSmart | 1.0 |
10×T4 DNA ligase buffer | 1.0 | ||
连接产物Products for connection | 产物5 Product 5 | 2.5 | |
产物6 Product 6 | 2.5 | ||
表达载体Expression vector | pYLCRISPR Cas9Pubi-H | 2.0 | |
限制性内切酶Restriction enzyme | Bsa I | 0.5 | |
连接酶Ligase | T4 DNA ligase | 0.5 | |
共计Total | 10.0 |
常规PCR Regular PCR | 重叠式PCR Overlapping PCR | 金门组装Golden gate assembly | ||||||
---|---|---|---|---|---|---|---|---|
步骤Step | 温度Temperature (℃) | 时间Time (s) | 步骤Step | 温度Temperature (℃) | 时间Time (s) | 步骤Step | 温度Temperature (℃) | 时间Time (s) |
1 | 95 | 180 | 1 | 95 | 180 | 1 | 37 | 300 |
2 | 95 | 15 | 2 | 95 | 15 | 2 | 16 | 600 |
3 | 60 | 15 | 3 | 60 | 15 | 3 | - | 7200 |
4 | 72 | 30 | 4 | 72 | 30 | |||
5 | - | 2100 | 5 | - | 2100 | |||
6 | 72 | 300 | 6 | 72 | 3000 |
Table 3 PCR reaction condition
常规PCR Regular PCR | 重叠式PCR Overlapping PCR | 金门组装Golden gate assembly | ||||||
---|---|---|---|---|---|---|---|---|
步骤Step | 温度Temperature (℃) | 时间Time (s) | 步骤Step | 温度Temperature (℃) | 时间Time (s) | 步骤Step | 温度Temperature (℃) | 时间Time (s) |
1 | 95 | 180 | 1 | 95 | 180 | 1 | 37 | 300 |
2 | 95 | 15 | 2 | 95 | 15 | 2 | 16 | 600 |
3 | 60 | 15 | 3 | 60 | 15 | 3 | - | 7200 |
4 | 72 | 30 | 4 | 72 | 30 | |||
5 | - | 2100 | 5 | - | 2100 | |||
6 | 72 | 300 | 6 | 72 | 3000 |
溶液Solution | 成分Ingredient |
---|---|
酶解液Enzyme solution | 10 mmol·L-1 MES,1.5%纤维素酶R10 Cellulase R10,0.75%离析酶R10 Macerozyme R10,20 mmol·L-1 KCl,10 mmol·L-1 CaCl2,0.1% BSA,0.6 mol·L-1甘露醇Mannitol |
W5 | 154 mmol·L-1 NaCl,125 mmol·L-1 CaCl2,5 mmol·L-1 KCl,2 mmol·L-1 MES |
MMg | 0.4 mol·L-1甘露醇Mannitol,15 mmol·L-1 MgCl2,4 mmol·L-1 MES |
PEG 4000 | 20% PEG 4000,10 mmol·L-1 CaCl2,0.3 mol·L-1甘露醇Mannitol |
Table 4 Solutions used to extract and transform perennial ryegrass protoplasts
溶液Solution | 成分Ingredient |
---|---|
酶解液Enzyme solution | 10 mmol·L-1 MES,1.5%纤维素酶R10 Cellulase R10,0.75%离析酶R10 Macerozyme R10,20 mmol·L-1 KCl,10 mmol·L-1 CaCl2,0.1% BSA,0.6 mol·L-1甘露醇Mannitol |
W5 | 154 mmol·L-1 NaCl,125 mmol·L-1 CaCl2,5 mmol·L-1 KCl,2 mmol·L-1 MES |
MMg | 0.4 mol·L-1甘露醇Mannitol,15 mmol·L-1 MgCl2,4 mmol·L-1 MES |
PEG 4000 | 20% PEG 4000,10 mmol·L-1 CaCl2,0.3 mol·L-1甘露醇Mannitol |
1 | Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821. |
2 | Le C, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823. |
3 | Wiedenheft B, Sternberg S H, Doudna J A. RNA guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482: 331-338. |
4 | Dicarlo J E, Norville J E, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41(7): 4336-4343. |
5 | Jao L E, Wente S R, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(34): 13904-13909. |
6 | Gratz S J, Cummings A M, Nguyen J N, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 2013, 194(4): 1029-1035. |
7 | Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(3): 230-232. |
8 | Jiang W Z, Zhou H B, Bi H H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 2013, 41(20): e188. |
9 | Makarova K S, Wolf Y I, Alkhnbashi O S, et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015, 13(11): 722-736. |
10 | Jiang F G, Doudna J A. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 2017, 46(1): 505-529. |
11 | Amitai G, Sorek R. CRISPR-Cas adaptation: Insights into the mechanism of action. Nature Reviews Microbiology, 2016, 14(2): 67-76. |
12 | Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712. |
13 | Li J F, Norville J E, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688-691. |
14 | Ma X L, Zhang Q Y, Zhu Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284. |
15 | Kabadi A M, Ousterout D G, Hilton I B, et al. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Research, 2014, 42(19): e147. |
16 | Cermak T, Curtin S J, Gil-Humanes J, et al. A multipurpose toolkit to enable advanced genome engineering in plants. The Plant Cell, 2017, 29(6): 1196-1217. |
17 | Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3570-3575. |
18 | White R J. Transcription by RNA polymerase Ⅲ: More complex than we thought. Nature Reviews Genetics, 2011, 12(7): 459-463. |
19 | Dieci G, Fiorino G, Castelnuovo M, et al. The expanding RNA polymerase Ⅲ transcriptome. Trends in Genetics, 2007, 23(12): 614-622. |
20 | Minkenberg B, Xie K, Yang Y. Discovery of rice essential genes by characterizing a CRISP-edited mutation of closely related rice MAP kinase genes. The Plant Journal, 2017, 89(3): 636-648. |
21 | Song Y L, Wang K Q, Wang S, et al. Physiological responses of three kinds of cool season turf grasses under continuous drought stress, heat stress and their interaction. Acta Agrestia Sinica, 2018, 26(3): 705-717. |
宋娅丽, 王克勤, 王莎, 等. 3种冷季型草坪草对持续干旱、高温及其互作的生理生态响应. 草地学报, 2018, 26(3): 705-717. | |
22 | Yu G H, Xie Z N, Chen W, et al. Knock down of non-yellow coloring 1-like gene or chlorophyll in application enhanced chlorophyll accumulation with antioxidant roles in suppressing heat-induced leaf senescence in perennial ryegrass. Journal of Experimental Botany, 2021, 73(1): 429-444. |
23 | Yu G H, Xie Z N, Zhang J, et al. NOL-mediated functional stay-green traits in perennial ryegrass (Lolium perenne L.) involving multifaceted molecular factors and metabolic pathways regulating leaf senescence. The Plant Journal, 2021, 106(5): 1219-1232. |
24 | Yu G, Cheng Q, Xie Z, et al. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation, and its application on interaction study between LpNOL and LpNYC1. Plant Methods, 2017, 13(1): 46. |
25 | Li J F, Zhang D D, Jen S. Targeted plant genome editing via the CRISPR/Cas9 technology. Methods in Molecular Biology, 2015, 1284: 239-255. |
26 | Hui L, Zhao M, He J, et al. A simple and reliable method for creating PCR-detectable mutants in Arabidopsis with the polycistronic tRNA-gRNA CRISPR/Cas9 system. Acta Physiologiae Plantarum, 2019, 41(10): 170-184. |
27 | Wang Z, Wang S, Li D, et al. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnology Journal, 2018, 16(8): 1424-1433. |
28 | Engler C, Gruetzner R, Kandzia R, et al. Golden gate shuffling: A one-pot DNA shuffling method based on type Ⅱs restriction enzymes. PLoS One, 2009, 4(5): e5553. |
29 | Vidigal J A, Ventura A. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nature Communications, 2015, 6(8083): 1-7. |
30 | Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322: 1843-1845. |
31 | Hale C R, Zhao P, Olson S, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 2009, 139(5): 945-956. |
32 | Garneau J E, Dupuis M E, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320): 67-71. |
33 | Karimi M, Meyer B D, Hilson P. Modular cloning in plant cells. Trends in Plant Science, 2005, 10(3): 103-105. |
34 | Zhang Y, Su J, Shan D, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 2011, 7(1): 30. |
35 | Qi W, Zhu T, Tian Z, et al. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnology, 2016, 16(1): 58. |
36 | Ren C, Liu Y, Guo Y, et al. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Horticulture Research, 2021, 8(1): 52-64. |
[1] | Jia-ming YAO, Yue HE, Huan-huan HAO, Xin-ru HUANG, Jing ZHANG, Bin XU. Characterization and transcriptional regulation analysis of the LpPIL5 gene in perennial ryegrass [J]. Acta Prataculturae Sinica, 2022, 31(9): 155-167. |
[2] | Qing ZHANG, Jing XING, Jia-ming YAO, Ting-chao YIN, Xin-ru HUANG, Yue HE, Jing ZHANG, Bin XU. The role of a cytokinin signaling pathway type-B ARR transcription factor, LpARR10, in cadmium tolerance of perennial ryegrass [J]. Acta Prataculturae Sinica, 2022, 31(5): 135-143. |
[3] | Dong-rong HAN, Tuo YAO, Hai-yun LI, Shu-chao HUANG, Yan-shan YANG, Ya-min GAO, Chang-ning LI, Yin-cui ZHANG. Effects of combined application of microbial fertilizer and chemical fertilizer on the growth of Lolium perenne [J]. Acta Prataculturae Sinica, 2022, 31(3): 136-143. |
[4] | Li-qing ZHAO, Xiang-yong PENG, Jun-xiang LIU, Jin-mei MAO, Zhen-yuan SUN. Effects of reduced glutathione on the growth and photosynthesis of perennial ryegrass under lead stress [J]. Acta Prataculturae Sinica, 2021, 30(9): 97-104. |
[5] | ZHOU Han-yang, SUN Peng-yue, YU Xin-rong, ZHOU Yu, ZHANG Zhi-wei, GAO Jin-zhu, ZHAO Dong-hao, LUO Yi-lan, HU Tian-ming, FU Juan-juan. Protective effects of Flavobacterium succinicans on perennial ryegrass under shade stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 137-143. |
[6] | MA Bi-hua, LIN Wei-hu, GAO Min, WANG Xing-di, TIAN Pei. Effects of salicylic acid and Epichloё on perennial ryegrass (Lolium perenne) under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(1): 135-144. |
[7] | WANG Ri-ming, WANG Zhi-qiang, XIANG Zuo-xiang. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass [J]. Acta Prataculturae Sinica, 2019, 28(2): 168-178. |
[8] | DENG Jie, LI Fang, DUAN Ting-yu. Effects of AM fungus and grass endophyte on the infection of Lolium perenne by the pathogen Bipolaris sorokinianum in a greenhouse [J]. Acta Prataculturae Sinica, 2019, 28(12): 103-113. |
[9] | LI Meng-zhan, YIN Hong-ju, LI Ding-ding, LIU Ya-qi, WANG Suo-min. Knock out of two splice variants of MYB 40 using the gene-editing technique CRISPR/Cas9 [J]. Acta Prataculturae Sinica, 2019, 28(1): 120-127. |
[10] | BAO Ai-Ke, BAI Tian-Hui, ZHAO Tian-Xuan, SU Jia-Hao. CRISPR/Cas9: A gene targeting technology and its application in the study of plant genetic function [J]. Acta Prataculturae Sinica, 2017, 26(7): 190-200. |
[11] | WANG Pei, CUI Yan-Nong, GAO Li, WANG Suo-Min. Construction of RNAi expression vector of CYP86A gene in halophyte Puccinellia tenuiflora [J]. Acta Prataculturae Sinica, 2017, 26(6): 105-110. |
[12] | WANG Ri-Ming, XIONG Xing-Yao. Effect of temperature stress on growth and metabolism in perennial ryegrass [J]. Acta Prataculturae Sinica, 2016, 25(8): 81-90. |
[13] | La-Duo, ZHANG Yan-Jie, LIU Jie, CUI Ling-Ling, PANG You-Zhi. Spatial distribution patterns and environmental interpretation of plant species richness in the Lhasa Valley, Tibet [J]. Acta Prataculturae Sinica, 2016, 25(10): 202-211. |
[14] | FENG Peng, SUN Li, SHEN Xiao-Hui, JIANG Cheng, LI Ru-Lai, LI Zeng-Jie, ZHENG Hai-Yan, ZHANG Hua, GUO Wei, HAN Xu-Dong, HONG Ya-Nan. Response and enrichment ability of perennial ryegrass under lead and cadmium stresses [J]. Acta Prataculturae Sinica, 2016, 25(1): 153-162. |
[15] | LIANG Xiao-Hong, AI Fei-Fan, ZHONG Tian-Xiu, HAN Lie-Bao. Cross adaptation under drought and low temperature stress in perennial ryegrass [J]. Acta Prataculturae Sinica, 2016, 25(1): 163-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||