Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (8): 202-213.DOI: 10.11686/cyxb2022417
Shou-jiang SUN(), Pei-sheng MAO(), Li-ru DOU, Zhi-cheng JIA, Ming SUN, Wen MA, Cheng-ming OU, Juan WANG
Received:
2022-10-18
Revised:
2023-01-10
Online:
2023-08-20
Published:
2023-06-16
Contact:
Pei-sheng MAO
Shou-jiang SUN, Pei-sheng MAO, Li-ru DOU, Zhi-cheng JIA, Ming SUN, Wen MA, Cheng-ming OU, Juan WANG. Studies on the regulation of seed aging by reactive oxygen species and telomeres[J]. Acta Prataculturae Sinica, 2023, 32(8): 202-213.
1 | Baskin C C, Baskin J M. Breaking seed dormancy during dry storage: A useful tool or major problem for successful restoration via direct seeding? Plants, 2020, 9(5): 636-649. |
2 | Ebone L A, Caverzan A, Chavarria G. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiology and Biochemistry, 2019,145: 34-42. |
3 | Harman D. Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 1956, 11(3): 298-300. |
4 | Xue X, Zhang Q, Wu J X. Research of reactive oxygen species in plants and its application on stress tolerance. Biotechnology Bulletin, 2013(10): 6-11. |
薛鑫, 张芊, 吴金霞. 植物体内活性氧的研究及其在植物抗逆方面的应用. 生物技术通报, 2013(10): 6-11. | |
5 | Ratajczak E, Małecka A, Ciereszko I, et al. Mitochondria are important determinants of the aging of seeds. International Journal of Molecular Sciences, 2019, 20(7): 1568-1572. |
6 | Domergue J B, Abadie C, Limami A, et al. Seed quality and carbon primary metabolism. Plant, Cell and Environment, 2019, 42(10): 2776-2788. |
7 | Wang Y, Li Y, Xue H, et al. Reactive oxygen species-provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L.) seeds. The Plant Journal, 2015, 81(3): 438-452. |
8 | Oenel A, Fekete A, Krischke M, et al. Enzymatic and non-enzymatic mechanisms contribute to lipid oxidation during seed aging. Plant Cell Physiology, 2017, 58: 925-933. |
9 | Rajjou L, Debeaujon I. Seed longevity: Survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies, 2008, 331(10): 796-805. |
10 | Murthy U, Kumar P P, Sun W Q. Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: Lipid peroxidation, sugar hydrolysis, maillard reactions and their relationship to glass state transition. Journal of Experimental Botany, 2003, 54: 1057-1067. |
11 | Hu D, Ma G, Wang Q, et al. Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (Ulmus pumila L.) seeds during controlled deterioration. Plant, Cell & Environment, 2012, 35(11): 2045-2059. |
12 | Wang W Q, Xu D Y, Sui Y P, et al. A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice. Proceedings of the National Academy of Sciences of the United States of America, 2022(9): 119-132. |
13 | Bailly C. Active oxygen species and antioxidants in seed biology. Seed Science Research, 2004, 14(2): 93-107. |
14 | Waszczak C, Carmody M, Kangasjarvi J. Reactive oxygen species in plant signaling. Annual Review of Plant Biology, 2018, 69: 209-236. |
15 | Xu F, Yuan S, Liang H G, et al. The roles of alternating oxidase and uncoupling protein in plant mitochondria and their interrelationships. Plant Physiology Journal, 2009, 45(2): 105-110. |
徐飞, 袁澍, 梁厚果, 等. 交替氧化酶和解偶联蛋白在植物线粒体中的作用及其相互关系. 植物生理学报, 2009, 45(2): 105-110. | |
16 | McDonald A E. Alternative oxidase: An inter-kingdom perspective on the function and regulation of this broadly distributed ‘cyanide-resistant’ terminal oxidase. Functional Plant Biology, 2008, 35(7): 535-552. |
17 | Cvetkovska M, Vanlerberghe G C. Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytologist, 2012, 195(1): 32-39. |
18 | Clifton R, Millar A H, Whelan J. Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochimica et Biophysica Acta(BBA)-Bioenergetics, 2006, 1757(7): 730-741. |
19 | Bewley J D, Bradford K, Hilhorst H. Seeds: Physiology of development, germination and dormancy. Springer Science & Business Media, 2012. |
20 | Vanlerberghe G. Alternative oxidase: A mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. International Journal of Molecular Sciences, 2013, 14(4): 6805-6847. |
21 | Wang H, Ma Y W, Qiao Z H. Structural and functional characterization of AOX gene family. Biotechnology Bulletin, 2022, 38(7): 160-170. |
王慧, 马艺文, 乔正浩. AOX基因家族的结构和功能特征分析. 生物技术通报, 2022, 38(7): 160-170. | |
22 | Hu Y S, Gao W R, Wang R F, et al. Analysis of AOX and UCP families’ expression level in Prunus auriculata under stress. Forestry Science & Technology, 2015, 40(1): 6-10. |
胡银松, 高文蕊, 王瑞芳, 等. 胁迫下欧李AOX及UCP基因家族表达分析. 林业科技, 2015, 40(1): 6-10. | |
23 | Wei Y, Wang X, Shao X, et al. Sucrose treatment of mung bean seeds results in increased vitamin C, total phenolics, and antioxidant activity in mung bean sprouts. Food Science and Nutrition, 2019, 7(12): 4037-4044. |
24 | Camacho-Pereira J, Meyer L E, Machado L B, et al. Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity. Plant Physiology, 2009, 149(2): 1099-1110. |
25 | Wang J H, Liu H X, Xu T. The role of superoxide dismutase (SOD) in stress physiology and senescence physiology of plant. Plant Physiology Journal, 1989, 1(1): 1-7. |
王建华, 刘鸿先, 徐同. 超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用. 植物生理学报, 1989, 1(1): 1-7. | |
26 | Zhang W W, Zheng F X, Wang X K, et al. Effects of ozone on root activity, soluble protein content and antioxidant system in Oryza sativa roots. Chinese Journal of Plant Ecology, 2009, 33(3): 425-432. |
张巍巍, 郑飞翔, 王效科, 等. 臭氧对水稻根系活力、可溶性蛋白含量与抗氧化系统的影响. 植物生态学报, 2009, 33(3): 425-432. | |
27 | Jimenez A, Hernandez J A, Del Rio L A, et al. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology, 1997, 114(1): 275-284. |
28 | Linster C L, Adler L N, Webb K, et al. A second GDP-L-galactose phosphorylase in Arabidopsis en route to vitamin C. Journal of Biological Chemistry, 2008, 283(27): 18483-18492. |
29 | Farmer E E, Mueller M J. ROS-mediated lipid peroxidation and RES-activated signaling. Annual Review of Plant Biology, 2013, 64: 429-450. |
30 | Min C W, Lee S H, Cheon Y E, et al. In depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. Journal of Proteomics, 2017, 169: 125-135. |
31 | Lee H C, Wei Y H. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Experimental Biology and Medicine, 2007, 232(5): 592-606. |
32 | Satour P, Youssef C, Chatelain E, et al. Patterns of protein carbonylation during Medicago truncatula seed maturation. Plant Cell Environment, 2018, 41(9): 2183-2194. |
33 | Boucelha L, Abrous B O, Djebbar R. Is protein carbonylation a biomarker of seed priming and ageing? Functional Plant Biology, 2021, 48(6): 611-623. |
34 | Sano N, Rajjou L, North H M, et al. Staying alive: Molecular aspects of seed longevity. Plant Cell Physiology, 2016, 57(4): 660-674. |
35 | Kranner I, Birti S, Anderson K M, et al. Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death? Free Radical Biology and Medicine, 2006, 40(12): 2155-2165. |
36 | Kranner I, Chen H, Pritchard H W, et al. Inter-nucleosomal DNA fragmentation and loss of RNA integrity during seed aging. Plant Growth Regulation, 2011, 63: 63-72. |
37 | Mao C, Zhu Y, Cheng H, et al. Nitric oxide regulates seedling growth and mitochondrial responses in aged oat seeds. International Journal Molecular Science, 2018, 19(4): 1052-1065. |
38 | Roberts J, Florentine S, Etten E V, et al. Seed longevity and germination in response to changing drought and heat conditions on four populations of the invasive weed African lovegrass (Eragrostis curvula). Weed Science, 2021, 69(4): 1-25. |
39 | Waterworth W M, Footitt S, Bray C M, et al. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds. Proceedings of the National Academy of Sciences, 2016, 113(34): 9647-9652. |
40 | Waterworth W M, Masnavi G, Bhardwaj R M, et al. A plant DNA ligase is an important determinant of seed longevity. Plant Journal, 2010, 63(5): 848-860. |
41 | Chen H H, Chu P, Zhou Y L, et al. Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. Journal of Experimental Botany, 2012, 63(11): 4107-4121. |
42 | Costa-Nunes J, Bhatt A M, O'Shea S, et al. Characterization of the three Arabidopsis thaliana RAD21 cohesins reveals differential responses to ionizing radiation. Journal of Experimental Botany, 2006, 57(4): 971-983. |
43 | Osborne D J. Hazards of a germinating seed: Available water and the maintenance of genomic integrity. Israel Journal of Plant Sciences, 2000, 48(3): 173-179. |
44 | Balestrazzi A, Confalonieri M, Macovei A, et al. Seed imbibition in Medicago truncatula Gaertn.: Expression profiles of DNA repair genes in relation to PEG-mediated stress. Journal of Plant Physiology, 2011, 168(7): 706-713. |
45 | Hunt L, Holdsworth M J, Gray J E. Nicotinamidase activity is important for germination. The Plant Journal, 2007, 51(3): 341-351. |
46 | Miquel J, Economos A C, Fleming J, et al. Mitochondrial role in cell aging. Experimental Gerontology, 1980, 15(6): 575-591. |
47 | Greenberg J. A taxonomy of organizational justice theories. Academy of Management Review, 1987, 12(1): 9-22. |
48 | Bucholc M, Buchowicz J. Synthesis of extrachromosomal DNA and telomere-related sequences in germinating wheat embryos. Seed Science Research, 1992, 2(3): 141-146. |
49 | Donà M, Balestrazzi A, Mondoni A, et al. DNA profiling, telomere analysis and antioxidant properties as tools for monitoring ex situ seed longevity. Annals of Botany, 2013, 111(5): 987-998. |
50 | Zhang K L, Zhang Y, Sun J, et al. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiology and Biochemistry, 2021, 158: 475-485. |
51 | Chen B, Yin G, Whelan J, et al. Composition of mitochondrial complex I during the critical node of seed aging in Oryza sativa. Journal of Plant Physiology, 2019, 236: 7-14. |
52 | Chen H H, Chu P, Zhou Y L, et al. Ectopic expression of NnPER1, a Nelumbo nucifera 1‐cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. The Plant Journal, 2016, 88(4): 608-619. |
53 | Jiang X C, Zhou S Q. Research progress on molecular mechanisms of seed vigor and anti-aging ability. Life Science Research, 2021, 25(5): 406-416. |
姜孝成, 周诗琪. 种子活力或抗老化能力的分子机制研究进展. 生命科学研究, 2021, 25(5): 406-416. | |
54 | Nagel M, Kodde J, Pistrick S, et al. Barley seed aging: Genetics behind the dry elevated pressure of oxygen aging and moist controlled deterioration. Frontiers in Plant Science, 2016, 7: 388-395. |
55 | Gayen D, Ali N, Ganguly M, et al. RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell, Tissue and Organ Culture, 2014, 118(2): 229-243. |
56 | Xu H, Wei Y, Zhu Y, et al. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity. Plant Biotechnology Journal, 2015, 13(4): 526-539. |
57 | Li B B. Analysis of seed storage tolerance of wheat (Triticum aestivum) lipoxygenase RNAi transgenic lines. Xianyang: Northwest A & F University, 2016. |
李冰冰. 小麦转LOXi基因后代外源基因稳定性检测及种子耐储藏性分析. 咸阳: 西北农林科技大学, 2016. | |
58 | Huang J, Cai M, Long Q, et al. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Research, 2014, 23(4): 643-655. |
59 | Qian W, Kumar N, Roginskaya V, et al. Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proceedings of the National Academy of Sciences, 2019, 116(37): 18435-18444. |
[1] | Wen-wei LIU, Xin LIU, Ying-xia LEI, Qing-ping ZHOU, Zhi-feng LIU, Pei WANG. A comprehensive evaluation of cold resistance and the physiological response of Elymus sibiricus genotypes [J]. Acta Prataculturae Sinica, 2023, 32(8): 152-163. |
[2] | LIU Jian-xin, OU Xiao-bin, WANG Jin-cheng, LIU Rui-rui, JIA Hai-yan. Physiological response of naked oat seedlings to exogenous hydrogen peroxide (H2O2) under cadmium stress [J]. Acta Prataculturae Sinica, 2020, 29(1): 125-134. |
[3] | SUN Ming, WANG Si-qi, Aierken· Dawuti, MAO Pei-sheng. Effects of antioxidant priming on germination and seedling growth of aged seeds of smooth bromegrass [J]. Acta Prataculturae Sinica, 2019, 28(11): 105-113. |
[4] | TIAN Pei, NAN Zhi-Biao. Signaling in the mutualistic symbiotic interaction between endophytes and their hosts [J]. Acta Prataculturae Sinica, 2017, 26(4): 196-210. |
[5] | GENG Ya-Li, TIAN Ping, LUO Yan-Wen, HUA Can-Feng, TAO Shi-Yu, TIAN Jing, NI Ying-Dong. Effects of feeding high concentrate diets to lactating dairy goats on oxidative stress and cholesterol metabolism in ruminal epithelium [J]. Acta Prataculturae Sinica, 2017, 26(11): 94-103. |
[6] | MA Le-Yuan, CHEN Nian-Lai, HAN Guo-Jun, LI Liang, SUN Xiao-Mei. Protective effect of salicylic acid on reactive oxygen levels and antioxidant system of Coronilla varia seedlings under drought stress [J]. Acta Prataculturae Sinica, 2017, 26(10): 129-139. |
[7] | YE De-You, QI Yong-Hong, LI Min-Quan. Research progress on signal transduction and regulation mechanisms in plant-nematode interactions [J]. Acta Prataculturae Sinica, 2016, 25(10): 191-201. |
[8] | JIA Xue-jing, DONG Li-hua, DING Chun-bang, LI Xu, YUAN Ming. Effects of drought stress on reactive oxygen species and their scavenging systems in Chlorophytum capense var. medio-pictum leaf [J]. Acta Prataculturae Sinica, 2013, 22(5): 248-255. |
[9] | LIU Zi-gang, YANG Ya-li, HU Tian-ming,WANG Yu-lin, XU-Rui, LEI Yan-ni, HE Jun. Antioxidant and osmoregulation substance properties of flower buds in Platycodon grandiflorus male sterile lines [J]. Acta Prataculturae Sinica, 2012, 21(2): 77-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||