Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (1): 29-40.DOI: 10.11686/cyxb2024071
Previous Articles Next Articles
ASITAIKEN·Julihaiti1(), Zong-jiu SUN1,2,3(), Bing-jie YU1, DIDAER·Bisulidan1, Mei-sha LI1, Yi-sheng JING1
Received:
2024-03-05
Revised:
2024-04-17
Online:
2025-01-20
Published:
2024-11-04
Contact:
Zong-jiu SUN
ASITAIKEN·Julihaiti, Zong-jiu SUN, Bing-jie YU, DIDAER·Bisulidan, Mei-sha LI, Yi-sheng JING. Effects of enclosure on soil microbial carbon source utilization characteristics of sagebrush desert grassland[J]. Acta Prataculturae Sinica, 2025, 34(1): 29-40.
项目 Item | 指标 Index | 土层 Soil layer (cm) | 呼图壁Hutubi | 玛纳斯Manas | ||
---|---|---|---|---|---|---|
放牧Freely grazing | 封育Grazing exclusion | 放牧Freely grazing | 封育Grazing exclusion | |||
生物量 Biomass (g·m-2) | 地上Aboveground | - | 82.29±10.08b | 199.58±14.62a | 64.30±10.66b | 225.08±19.20a |
凋落物Litter | - | 9.91±3.06b | 35.66±3.62a | 9.39±1.54b | 22.13±1.90a | |
地下Belowground | 0~10 | 164.45±72.15a | 206.50±30.95a | 253.42±149.84a | 107.00±54.22a | |
30~50 | 22.40±5.54b | 98.25±29.03a | 54.17±6.50a | 23.83±10.13a | ||
土壤理化性质 Soil physicochemical properties | 酸碱度pH | 0~10 | 7.96±0.04a | 7.91±0.10a | 8.39±0.01a | 8.32±0.09a |
30~50 | 8.28±0.16a | 8.27±0.16a | 8.39±0.10a | 8.59±0.16a | ||
容重Bulk density (g·cm-3) | 0~10 | 1.31±0.02a | 1.31±0.03a | 1.16±0.03a | 1.24±0.04a | |
30~50 | 1.40±0.09a | 1.42±0.04a | 1.25±0.09a | 1.29±0.03a | ||
含水量Water content (%) | 0~10 | 4.62±1.05a | 3.08±1.08a | 1.97±0.50a | 2.95±0.60a | |
30~50 | 8.23±2.09a | 5.66±0.93a | 6.31±1.18a | 5.13±0.95a | ||
有机碳Organic carbon (g·kg-1) | 0~10 | 15.78±1.01a | 16.55±1.45a | 12.34±2.60a | 16.70±1.47a | |
30~50 | 8.05±0.58a | 9.31±1.48a | 6.59±1.06a | 7.85±0.71a | ||
全氮Total nitrogen (g·kg-1) | 0~10 | 2.76±0.07b | 3.15±0.07a | 2.34±0.09b | 3.43±0.13a | |
30~50 | 2.23±0.08b | 2.60±0.09a | 2.10±0.20a | 2.32±0.23a | ||
全磷Total phosphorus (g·kg-1) | 0~10 | 0.73±0.02a | 0.78±0.03a | 0.77±0.01b | 0.87±0.03a | |
30~50 | 0.67±0.03a | 0.70±0.03a | 0.64±0.08a | 0.78±0.02a |
Table 1 Effects of enclosure on biomass and soil physicochemical properties of sagebrush desert grassland
项目 Item | 指标 Index | 土层 Soil layer (cm) | 呼图壁Hutubi | 玛纳斯Manas | ||
---|---|---|---|---|---|---|
放牧Freely grazing | 封育Grazing exclusion | 放牧Freely grazing | 封育Grazing exclusion | |||
生物量 Biomass (g·m-2) | 地上Aboveground | - | 82.29±10.08b | 199.58±14.62a | 64.30±10.66b | 225.08±19.20a |
凋落物Litter | - | 9.91±3.06b | 35.66±3.62a | 9.39±1.54b | 22.13±1.90a | |
地下Belowground | 0~10 | 164.45±72.15a | 206.50±30.95a | 253.42±149.84a | 107.00±54.22a | |
30~50 | 22.40±5.54b | 98.25±29.03a | 54.17±6.50a | 23.83±10.13a | ||
土壤理化性质 Soil physicochemical properties | 酸碱度pH | 0~10 | 7.96±0.04a | 7.91±0.10a | 8.39±0.01a | 8.32±0.09a |
30~50 | 8.28±0.16a | 8.27±0.16a | 8.39±0.10a | 8.59±0.16a | ||
容重Bulk density (g·cm-3) | 0~10 | 1.31±0.02a | 1.31±0.03a | 1.16±0.03a | 1.24±0.04a | |
30~50 | 1.40±0.09a | 1.42±0.04a | 1.25±0.09a | 1.29±0.03a | ||
含水量Water content (%) | 0~10 | 4.62±1.05a | 3.08±1.08a | 1.97±0.50a | 2.95±0.60a | |
30~50 | 8.23±2.09a | 5.66±0.93a | 6.31±1.18a | 5.13±0.95a | ||
有机碳Organic carbon (g·kg-1) | 0~10 | 15.78±1.01a | 16.55±1.45a | 12.34±2.60a | 16.70±1.47a | |
30~50 | 8.05±0.58a | 9.31±1.48a | 6.59±1.06a | 7.85±0.71a | ||
全氮Total nitrogen (g·kg-1) | 0~10 | 2.76±0.07b | 3.15±0.07a | 2.34±0.09b | 3.43±0.13a | |
30~50 | 2.23±0.08b | 2.60±0.09a | 2.10±0.20a | 2.32±0.23a | ||
全磷Total phosphorus (g·kg-1) | 0~10 | 0.73±0.02a | 0.78±0.03a | 0.77±0.01b | 0.87±0.03a | |
30~50 | 0.67±0.03a | 0.70±0.03a | 0.64±0.08a | 0.78±0.02a |
项目 Item | 指标 Index | 土层 Soil layer (cm) | 解释率Explanation rate (%) | 显著性Significance (P) | ||
---|---|---|---|---|---|---|
放牧 Freely grazing | 封育 Grazing exclusion | 放牧 Freely grazing | 封育 Grazing exclusion | |||
生物量 Biomass | 地上Aboveground | 0~10 | 17.0 | 22.1 | 0.254 | 0.168 |
30~50 | 8.2 | 14.0 | 0.686 | 0.356 | ||
凋落物Litter | 0~10 | 12.1 | 20.5 | 0.592 | 0.204 | |
30~50 | 8.2 | 2.7 | 0.556 | 0.954 | ||
地下Belowground | 0~10 | 22.1 | 2.6 | 0.208 | 0.996 | |
30~50 | 11.9 | 6.3 | 0.456 | 0.740 | ||
土壤理化性质 Soil physicochemical properties | 酸碱度pH | 0~10 | 6.2 | 27.4 | 0.908 | 0.070 |
30~50 | 10.4 | 6.5 | 0.548 | 0.714 | ||
容重Bulk density | 0~10 | 8.2 | 18.3 | 0.816 | 0.250 | |
30~50 | 32.0 | 8.9 | 0.062 | 0.656 | ||
含水量Water content | 0~10 | 18.0 | 9.0 | 0.272 | 0.716 | |
30~50 | 3.2 | 3.8 | 0.972 | 0.910 | ||
有机碳Organic carbon | 0~10 | 17.5 | 16.4 | 0.256 | 0.296 | |
30~50 | 4.6 | 7.1 | 0.908 | 0.710 | ||
全氮Total nitrogen | 0~10 | 9.0 | 10.5 | 0.746 | 0.678 | |
30~50 | 13.2 | 8.2 | 0.424 | 0.652 | ||
全磷Total phosphorus | 0~10 | 11.6 | 15.7 | 0.588 | 0.398 | |
30~50 | 13.3 | 25.6 | 0.446 | 0.182 |
Table 2 Explanatory rates and significance of environmental variables affecting soil microbial carbon sources of sagebrush desert grassland
项目 Item | 指标 Index | 土层 Soil layer (cm) | 解释率Explanation rate (%) | 显著性Significance (P) | ||
---|---|---|---|---|---|---|
放牧 Freely grazing | 封育 Grazing exclusion | 放牧 Freely grazing | 封育 Grazing exclusion | |||
生物量 Biomass | 地上Aboveground | 0~10 | 17.0 | 22.1 | 0.254 | 0.168 |
30~50 | 8.2 | 14.0 | 0.686 | 0.356 | ||
凋落物Litter | 0~10 | 12.1 | 20.5 | 0.592 | 0.204 | |
30~50 | 8.2 | 2.7 | 0.556 | 0.954 | ||
地下Belowground | 0~10 | 22.1 | 2.6 | 0.208 | 0.996 | |
30~50 | 11.9 | 6.3 | 0.456 | 0.740 | ||
土壤理化性质 Soil physicochemical properties | 酸碱度pH | 0~10 | 6.2 | 27.4 | 0.908 | 0.070 |
30~50 | 10.4 | 6.5 | 0.548 | 0.714 | ||
容重Bulk density | 0~10 | 8.2 | 18.3 | 0.816 | 0.250 | |
30~50 | 32.0 | 8.9 | 0.062 | 0.656 | ||
含水量Water content | 0~10 | 18.0 | 9.0 | 0.272 | 0.716 | |
30~50 | 3.2 | 3.8 | 0.972 | 0.910 | ||
有机碳Organic carbon | 0~10 | 17.5 | 16.4 | 0.256 | 0.296 | |
30~50 | 4.6 | 7.1 | 0.908 | 0.710 | ||
全氮Total nitrogen | 0~10 | 9.0 | 10.5 | 0.746 | 0.678 | |
30~50 | 13.2 | 8.2 | 0.424 | 0.652 | ||
全磷Total phosphorus | 0~10 | 11.6 | 15.7 | 0.588 | 0.398 | |
30~50 | 13.3 | 25.6 | 0.446 | 0.182 |
1 | Chu H Y, Sun H B, Tripathi B M, et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environmental Microbiology, 2016, 18(5): 1523-1533. |
2 | Ren C, Zhang W, Zhong Z, et al. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment, 2017, 610: 750-758. |
3 | Jing J, Zhang M Y, Gao Y H. Effects of enclosure on soil microbial carbon utilization in an alpine steppe. Ecological Science, 2021, 40(3): 25-32. |
敬洁, 张梦瑶, 高永恒. 围栏禁牧对高寒草原土壤微生物碳源利用的影响. 生态科学, 2021, 40(3): 25-32. | |
4 | Chen Y S, Ma Y P, Wang H M, et al. Carbon source utilization by soil bacteria at different lengths of time after introducing shrubs to the desert steppe. Acta Prataculturae Sinica, 2023, 32(6): 30-44. |
陈彦硕, 马彦平, 王红梅, 等. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征. 草业学报, 2023, 32(6): 30-44. | |
5 | Zhou Y, Geng X D, Wang C Z. Effect of soil depth on carbon source utilization ability of rhizosphere microorganisms of Paeonia ostii. Journal of Southwest Forestry University, 2023, 43(6): 185-191. |
周英, 耿晓东, 汪成忠. 不同土壤深度凤丹根际微生物碳源利用能力的研究. 西南林业大学学报(自然科学), 2023, 43(6): 185-191. | |
6 | Wang W Q, Yang L, Cheng Z B, et al. Study on soil microbial biomass carbon source metabolism in different types of sodic saline-alkali soil in arid area. Journal of Arid Land Resources and Environment, 2019, 33(6): 158-166. |
王巍琦, 杨磊, 程志博, 等. 干旱区不同类型盐碱地土壤微生物碳源代谢活性研究. 干旱区资源与环境, 2019, 33(6): 158-166. | |
7 | Jin Z L, Liu G P, Zhou M T, et al. Soil enzyme activity and microbial carbon metabolism along an altitudinal gradient in grasslands of Karst mountain. Research of Soil and Water Conservation, 2020, 27(3): 37-44. |
金章利, 刘高鹏, 周明涛, 等. 喀斯特山地草地土壤酶活性及土壤微生物碳代谢活性研究. 水土保持研究, 2020, 27(3): 37-44. | |
8 | Zhang Q, Wang X, Zhang Z, et al. Linking soil bacterial community assembly with the composition of organic carbon during forest succession. Soil Biology and Biochemistry, 2022, 173: 108790. |
9 | Zhou S J, Dong Y Q, Asitaiken·J L H T, et al. Quantitative characteristics and diversity of sagebrush desert plant communities on the northern slope of Tianshan Mountains. Xinjiang Agricultural Sciences, 2023, 60(9): 2298-2305. |
周时杰, 董乙强, 阿斯太肯·居力海提, 等. 天山北坡蒿类荒漠植物群落数量特征及其多样性. 新疆农业科学, 2023, 60(9): 2298-2305. | |
10 | Asitaiken·J L H T, Dong Y Q, Li J, et al. Effects of grazing exclusion on nutrition and stoichiometry characteristics of Artemisia desert vegetation and soil. Journal of Arid Land Resources and Environment, 2021, 35(11): 157-164. |
阿斯太肯·居力海提, 董乙强, 李靖, 等. 禁牧对不同气候区蒿类荒漠植被和土壤养分及化学计量特征的影响. 干旱区资源与环境, 2021, 35(11): 157-164. | |
11 | Li S Y, Cui Y X, Sun Z J, et al. Effect of grazing exclusion on soil organic carbon and stoichiometry characteristics of soil microbial biomass in sagebrush desert. Acta Prataculturae Sinica, 2023, 32(6): 58-70. |
李思媛, 崔雨萱, 孙宗玖, 等. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响. 草业学报, 2023, 32(6): 58-70. | |
12 | Ye H W, Sun Z J, Liu H X, et al. Effects of grazing exclusion on the temporal stability of aboveground biomass of sagebrush desert grassland. Acta Agrestia Sinica, 2023, 31(4): 1163-1172. |
冶华薇, 孙宗玖, 刘慧霞, 等. 封育对蒿类荒漠草地植被地上生物量时间稳定性的影响. 草地学报, 2023, 31(4): 1163-1172. | |
13 | Zhang Y, Asiya·M L K, Xin X P, et al. Effects of fencing and grazing on the community structure, biomass and forage quality of temperate steppe in Xinjiang. Acta Agrestia Sinica, 2020, 28(3): 815-821. |
张宇, 阿斯娅·曼力克, 辛晓平, 等. 禁牧与放牧对新疆温性草原群落结构、生物量及牧草品质的影响. 草地学报, 2020, 28(3): 815-821. | |
14 | Yang J, Zhan W, Wang X T. Effects of enclosure on plant community characteristics of degraded alpine steppe in northern Tibet. Chinese Journal of Grassland, 2020, 42(6): 44-49, 140. |
杨军, 詹伟, 王向涛. 10年围栏封育对藏北退化高寒草甸植物群落特征的影响. 中国草地学报, 2020, 42(6): 44-49, 140. | |
15 | Liu J K, Zhang K B, Feng X, et al. Effects of enclosure regimes on community characteristics and soil physicochemical properties in desert grasslands. Ecology and Environmental Sciences, 2021, 30(3): 445-452. |
刘建康, 张克斌, 冯湘, 等. 封育方式对荒漠草原群落特征及土壤理化性质的影响. 生态环境学报, 2021, 30(3): 445-452. | |
16 | Zhou Z Y, Li F R, Chen S K, et al. Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland. Plant and Soil, 2011, 341: 257-268. |
17 | Wang Z, Zhang Q, Staley C, et al. Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability. Biology and Fertility of Soils, 2019, 55(2): 121-134. |
18 | Jiang A J, Dong Y Q, Asitaiken·J L H T, et al. Effects of grazing exclusion on soil bacterial community characteristics in different grassland types. Acta Agrestia Sinica, 2022, 30(10): 2600-2608. |
姜安静, 董乙强, 阿斯太肯·居力海提, 等. 封育对不同草地类型土壤细菌群落特征的影响. 草地学报, 2022, 30(10): 2600-2608. | |
19 | Zeng Q, An S, Liu Y. Soil bacterial community response to vegetation succession after fencing in the grassland of China. Science of the Total Environment, 2017, 609: 2-10. |
20 | Zhang C, Liu G, Song Z, et al. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands. Soil Biology and Biochemistry, 2018, 124: 47-58. |
21 | Bao S D. Soil agricultural and chemistry analysis (The Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
22 | Li H, Li X M, Yao Q Z, et al. Biolog-ECO analysis of rhizosphere soil microbial community characteristics of five different plants in two different grasslands. Microbiology China, 2020, 47(9): 2947-2958. |
李慧, 李雪梦, 姚庆智, 等. 基于Biolog-ECO方法的两种不同草原中5种不同植物根际土壤微生物群落特征. 微生物学通报, 2020, 47(9): 2947-2958. | |
23 | Qu T B, Yu M, Zhu Y, et al. Utilization of carbon sources by soil bacteria in different plant functional groups in the Songnen Steppe. Pratacultural Science, 2016, 33(12): 2398-2406. |
曲同宝, 于淼, 朱悦, 等. 松嫩草地不同植物功能群土壤细菌的碳源利用. 草业科学, 2016, 33(12): 2398-2406. | |
24 | Xue Y F, Zong N, He N P, et al. Influence of long-term enclosure and free grazing on soil microbial community structure and carbon metabolic diversity of alpine meadow. Chinese Journal of Applied Ecology, 2018, 29(8): 2705-2712. |
薛亚芳, 宗宁, 何念鹏, 等. 长期围封和自由放牧对高寒草甸土壤微生物群落结构及碳源代谢多样性的影响. 应用生态学报, 2018, 29(8): 2705-2712. | |
25 | Liu M X, Liu X, Zhao Y, et al. Effects of film mulching on soil microbial carbon source metabolism in dry-farmland. Acta Ecologica Sinica, 2022, 42(22): 9213-9225. |
刘美霞, 刘秀, 赵燕, 等. 地膜覆盖对旱作春玉米农田土壤微生物碳源代谢的影响. 生态学报, 2022, 42(22): 9213-9225. | |
26 | Zhu K, Wang R, Li G, et al. Carbon sources metabolic characteristics of rhizosphere bacterial and fungal community in different growth stages of maize in albic soil. Ecology and Environmental Sciences, 2018, 27(5): 885-891. |
朱珂, 王蕊, 李刚, 等. 白浆土玉米不同生长时期根际土壤细菌和真菌群落碳源代谢特征. 生态环境学报, 2018, 27(5): 885-891. | |
27 | Zhang X J, An L Y, Liu Y, et al. Effects of soil bacterial diversity on soil carbon metabolism based on gradient dilution method. Acta Ecologica Sinica, 2020, 40(3): 768-777. |
张秀娟, 安丽芸, 刘勇, 等. 基于梯度稀释法分析细菌多样性对土壤碳代谢的影响. 生态学报, 2020, 40(3): 768-777. | |
28 | Li Q, Feng J, Wu J, et al. Spatial variation in soil microbial community structure and its relation to plant distribution and local environments following afforestation in central China. Soil and Tillage Research, 2019, 193: 8-16. |
29 | Wang Y, Zhang C, Zhang G, et al. Carbon input manipulations affecting microbial carbon metabolism in temperate forest soils-A comparative study between broadleaf and coniferous plantations. Geoderma, 2019, 355: 113914. |
30 | Li J, Cooper J M, Li Y, et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology, 2015, 96: 75-87. |
[1] | Guang-xiong HE, Zheng-tao SHI, Bang-guo YAN, Hao-zhou YANG, Yi SUN, Yan-dan WANG, Jian-lin YU, Run-lian HE, Liang-tao SHI, Hai-dong FANG. Effects of fencing enclosure on interspecific associations in a Savanna grassland community in China’s arid-hot valley region [J]. Acta Prataculturae Sinica, 2023, 32(2): 1-14. |
[2] | Jia-qiang JING, Ren-qi-li-mo-ge SA, Jie QIN, Hai-fang ZHANG, Ming LI, Dian-lin YANG. Effects of different land-use patterns on soil active organic carbon in Stipa baicalensis steppe in Inner Mongolia [J]. Acta Prataculturae Sinica, 2022, 31(1): 47-56. |
[3] | Ying-ying NIE, Jin-qiang CHEN, Xiao-ping XIN, Li-jun XU, Gui-xia YANG, Xu WANG. Responses of niche characteristics and species diversity of main plant populations to duration of enclosure in the Hulun Buir meadow steppe [J]. Acta Prataculturae Sinica, 2021, 30(10): 15-25. |
[4] | BAO Gen-sheng, SONG Mei-ling, WANG Yu-qin, YIN Ya-li, WANG Hong-sheng. Effects of grazing exclosure and herbicide on soil physical-chemical properties and microbial biomass of Stellera chamaejasme patches in degraded grassland [J]. Acta Prataculturae Sinica, 2020, 29(9): 63-72. |
[5] | NIE Ying-ying, XU Li-jun, XIN Xiao-ping, CHEN Bao-rui, ZHANG Bao-hui. Effects of fence enclosure on the plant community composition and niche characteristics in a temperate meadow steppe [J]. Acta Prataculturae Sinica, 2020, 29(11): 11-22. |
[6] | SU Ting-ting, MA Hong-bin, ZHOU Yao, JIA Xi-yang, ZHANG Rui, ZHANG Shuang-qiao, HU Yan-li. Response of typical steppe grassland soil physical and chemical properties to various ecological restoration measures in the Ningxia Loess Hill Region [J]. Acta Prataculturae Sinica, 2019, 28(4): 34-46. |
[7] | YU Shuang, TAO Li-bo, XÜ Dong-mei, XÜ Ai-yun, LIU Jin-long. Effects of enclosure on the soil organic carbon and its active components in desert steppe grassland [J]. Acta Prataculturae Sinica, 2019, 28(2): 190-196. |
[8] | ZHANG Rui, MA Hong-bin, JIA Xi-yang, ZHOU Yao, SU Ting-ting, CAI Yu-rong, ZHOU Jing-jing. Characteristics of soil seed banks in a typical grassland in the loess hilly region of Ningxia under different ecological restoration measures [J]. Acta Prataculturae Sinica, 2018, 27(1): 32-41. |
[9] | ZHAO Ling-Ping, TAN Shi-Tu, BAI Xin, WANG Zhan-Bin. Effects of enclosure duration on plant propagation and vegetation regeneration in the semiarid steppe of Yunwu Mountain [J]. Acta Prataculturae Sinica, 2017, 26(10): 1-9. |
[10] | YANG You-Fang, ZI Hong-Biao, LIU Min, A DE Lu-Ji, CHEN Yan, WANG Chang-Ting. Responses of soil microbial community functional diversity to Camponotus herculeanus ant-hill disturbance in alpine meadows [J]. Acta Prataculturae Sinica, 2017, 26(1): 43-53. |
[11] | WANG Zhen, HU Jing, LI Xi-Liang, A-La-Mu-Si, DING Yong, HOU Xiang-Yang, YU Hui. Effects of land use on biomass of dominant plants in typical steppe [J]. Acta Prataculturae Sinica, 2016, 25(6): 185-189. |
[12] | MAO Shaojuan, WU Qihua, ZHU Jingbin, LI Hongqin, ZHANG Fawei, LI Yingnian. Response of the maintain performance in alpine grassland to enclosure on the Northern Tibetan Plateau [J]. Acta Prataculturae Sinica, 2015, 24(1): 21-30. |
[13] | WANG Jie,LI Gang,XIU Wei-ming,ZHAO Jian-ning,WANG Hui,YANG Dian-lin. Responses of soil microbial functional diversity to nitrogen and water input in Stipa baicalensiss teppe, Inner Mongolia, Northern China [J]. Acta Prataculturae Sinica, 2014, 23(4): 343-350. |
[14] | LI Yu-jie, LI Gang, SONG Xiao-long, ZHAO Jian-ning, XIU Wei-ming, YANG Dian-lin. Effect of rest-grazing on soil microbial community functional diversity in Stipa baicalensis steppe [J]. Acta Prataculturae Sinica, 2013, 22(6): 21-30. |
[15] | GAO Kai, ZHU Tie-xia, HAN Guo-dong. Impact of enclosure duration on plant functional and species diversity in Inner Mongolian grassland [J]. Acta Prataculturae Sinica, 2013, 22(6): 39-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||