Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (8): 1-14.DOI: 10.11686/cyxb2024363
Bin FENG1,3,4(
), Xiao-xia YANG2,3, Yu-zhen LIU2,3, Wen-ting LIU2,3, Wei-dong LYU2,3, Yan-fen ZHANG5, Quan-min DONG2,3(
)
Received:2024-09-24
Revised:2024-12-02
Online:2025-08-20
Published:2025-06-16
Contact:
Quan-min DONG
Bin FENG, Xiao-xia YANG, Yu-zhen LIU, Wen-ting LIU, Wei-dong LYU, Yan-fen ZHANG, Quan-min DONG. Effects of different livestock classes on species diversity, niches, and interspecific associations in alpine grassland[J]. Acta Prataculturae Sinica, 2025, 34(8): 1-14.
| 功能群Functional group | 物种Species | 功能群Functional group | 物种Species |
|---|---|---|---|
禾本科 Poaceae | 西北针茅Stipa sareptana var. krylovii | 杂类草 Forb | 鸡冠茶Sibbaldianthe bifurca |
| 紫花针茅Stipa purpurea | 白花枝子花Dracocephalum heterophyllum | ||
| 赖草Leymus secalinus | 猪毛蒿Artemisia scoparia | ||
| 早熟禾Poa annua | 冷蒿Artemisia frigida | ||
| 洽草Koeleria macrantha | 蒲公英Taraxacum mongolicum | ||
| 扁穗冰草Agropyron cristatum | 毛莓草Sibbaldianthe adpressa | ||
| 垂穗披碱草Elymus nutans | 白苞筋骨草Ajuga lupulina | ||
| 芨芨草Neotrinia splendens | 车前Plantago asiatica | ||
| 醉马草Achnatherum inebrians | 狼毒Stellera chamaejasme | ||
莎草科 Cyperaceae | 矮生嵩草Carex alatauensis | 鳞叶龙胆Gentiana squarrosa | |
| 干生薹草Carex aridula | 狗娃花Aster hispidus | ||
豆科 Fabaceae | 白花棘豆Oxytropis coerulea f. albiflora | 唐松草Thalictrum aquilegiifolium var. sibiricum | |
| 斜茎黄芪Astragalus laxmannii | 湿生扁蕾Gentianopsis paludosa | ||
| 青海苜蓿Medicago archiducis-nicolai | 北柴胡Bupleurum chinense | ||
| 披针叶野决明Thermopsis lanceolata | 蚓果芥Braya humilis | ||
杂类草 Forb | 星毛委陵菜Potentilla acaulis | 达乌里秦艽Gentiana dahurica | |
| 多茎委陵菜Potentilla multicaulis | 麻花艽Gentiana straminea |
Table 1 Description of the vegetation community composition in the trial area
| 功能群Functional group | 物种Species | 功能群Functional group | 物种Species |
|---|---|---|---|
禾本科 Poaceae | 西北针茅Stipa sareptana var. krylovii | 杂类草 Forb | 鸡冠茶Sibbaldianthe bifurca |
| 紫花针茅Stipa purpurea | 白花枝子花Dracocephalum heterophyllum | ||
| 赖草Leymus secalinus | 猪毛蒿Artemisia scoparia | ||
| 早熟禾Poa annua | 冷蒿Artemisia frigida | ||
| 洽草Koeleria macrantha | 蒲公英Taraxacum mongolicum | ||
| 扁穗冰草Agropyron cristatum | 毛莓草Sibbaldianthe adpressa | ||
| 垂穗披碱草Elymus nutans | 白苞筋骨草Ajuga lupulina | ||
| 芨芨草Neotrinia splendens | 车前Plantago asiatica | ||
| 醉马草Achnatherum inebrians | 狼毒Stellera chamaejasme | ||
莎草科 Cyperaceae | 矮生嵩草Carex alatauensis | 鳞叶龙胆Gentiana squarrosa | |
| 干生薹草Carex aridula | 狗娃花Aster hispidus | ||
豆科 Fabaceae | 白花棘豆Oxytropis coerulea f. albiflora | 唐松草Thalictrum aquilegiifolium var. sibiricum | |
| 斜茎黄芪Astragalus laxmannii | 湿生扁蕾Gentianopsis paludosa | ||
| 青海苜蓿Medicago archiducis-nicolai | 北柴胡Bupleurum chinense | ||
| 披针叶野决明Thermopsis lanceolata | 蚓果芥Braya humilis | ||
杂类草 Forb | 星毛委陵菜Potentilla acaulis | 达乌里秦艽Gentiana dahurica | |
| 多茎委陵菜Potentilla multicaulis | 麻花艽Gentiana straminea |
处理 Treatment | 数量Number | 小区Plot | ||
|---|---|---|---|---|
牦牛 Yak | 藏羊 Sheep | 面积 Area (hm2) | 数量 Number | |
| 禁牧NG | 0 | 0 | 0.05 | 3 |
| 藏羊单牧SG | 0 | 2 | 0.17 | 3 |
| MG1∶6 | 1 | 6 | 0.77 | 3 |
| MG1∶4 | 1 | 4 | 0.60 | 3 |
| MG1∶2 | 1 | 2 | 0.43 | 3 |
| 牦牛单牧YG | 1 | 0 | 0.26 | 3 |
Table 2 Trial description of different livestock assembly grazing
处理 Treatment | 数量Number | 小区Plot | ||
|---|---|---|---|---|
牦牛 Yak | 藏羊 Sheep | 面积 Area (hm2) | 数量 Number | |
| 禁牧NG | 0 | 0 | 0.05 | 3 |
| 藏羊单牧SG | 0 | 2 | 0.17 | 3 |
| MG1∶6 | 1 | 6 | 0.77 | 3 |
| MG1∶4 | 1 | 4 | 0.60 | 3 |
| MG1∶2 | 1 | 2 | 0.43 | 3 |
| 牦牛单牧YG | 1 | 0 | 0.26 | 3 |
编号 No. | 优势物种 Dominant species | 重要值 Importance value | 生态位宽度 Niche breadth | |
|---|---|---|---|---|
| BS | BL | |||
| 1 | 矮生嵩草 C. alatauensis | 0.20 | 4.95 | 134.98 |
| 2 | 西北针茅 S. sareptana var. krylovii | 0.16 | 4.99 | 133.82 |
| 3 | 星毛委陵菜 P. acaulis | 0.13 | 4.86 | 113.20 |
| 4 | 早熟禾 P. annua | 0.09 | 4.96 | 131.26 |
| 5 | 赖草 L. secalinus | 0.07 | 4.98 | 132.94 |
| 6 | 洽草 K. macrantha | 0.07 | 4.90 | 126.83 |
| 7 | 干生薹草 C. aridula | 0.06 | 4.76 | 98.57 |
| 8 | 斜茎黄芪 A. laxmannii | 0.03 | 4.79 | 101.14 |
| 9 | 冷蒿 A. frigida | 0.02 | 4.37 | 51.56 |
| 10 | 狼毒 S. chamaejasme | 0.02 | 4.00 | 46.11 |
| 11 | 多茎委陵菜 P. multicaulis | 0.02 | 4.59 | 82.41 |
| 12 | 白花枝子花D. heterophyllum | 0.02 | 4.58 | 79.82 |
Table 3 The important value and niche breadth of dominant plants
编号 No. | 优势物种 Dominant species | 重要值 Importance value | 生态位宽度 Niche breadth | |
|---|---|---|---|---|
| BS | BL | |||
| 1 | 矮生嵩草 C. alatauensis | 0.20 | 4.95 | 134.98 |
| 2 | 西北针茅 S. sareptana var. krylovii | 0.16 | 4.99 | 133.82 |
| 3 | 星毛委陵菜 P. acaulis | 0.13 | 4.86 | 113.20 |
| 4 | 早熟禾 P. annua | 0.09 | 4.96 | 131.26 |
| 5 | 赖草 L. secalinus | 0.07 | 4.98 | 132.94 |
| 6 | 洽草 K. macrantha | 0.07 | 4.90 | 126.83 |
| 7 | 干生薹草 C. aridula | 0.06 | 4.76 | 98.57 |
| 8 | 斜茎黄芪 A. laxmannii | 0.03 | 4.79 | 101.14 |
| 9 | 冷蒿 A. frigida | 0.02 | 4.37 | 51.56 |
| 10 | 狼毒 S. chamaejasme | 0.02 | 4.00 | 46.11 |
| 11 | 多茎委陵菜 P. multicaulis | 0.02 | 4.59 | 82.41 |
| 12 | 白花枝子花D. heterophyllum | 0.02 | 4.58 | 79.82 |
| 编号No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.786 | 0.821 | 0.801 | 0.813 | 0.860 | 0.677 | 0.814 | 0.747 | 0.829 | 0.770 | 0.743 | |
| 2 | 0.782 | 0.759 | 0.793 | 0.848 | 0.810 | 0.829 | 0.761 | 0.651 | 0.749 | 0.880 | 0.809 | |
| 3 | 0.752 | 0.698 | 0.634 | 0.626 | 0.674 | 0.713 | 0.689 | 0.682 | 0.671 | 0.565 | 0.561 | |
| 4 | 0.790 | 0.786 | 0.683 | 0.805 | 0.832 | 0.805 | 0.846 | 0.919 | 0.747 | 0.886 | 0.930 | |
| 5 | 0.807 | 0.845 | 0.678 | 0.810 | 0.807 | 0.777 | 0.792 | 0.776 | 0.790 | 0.905 | 0.857 | |
| 6 | 0.834 | 0.788 | 0.713 | 0.818 | 0.788 | 0.740 | 0.739 | 0.811 | 0.655 | 0.749 | 0.761 | |
| 7 | 0.579 | 0.711 | 0.665 | 0.697 | 0.669 | 0.652 | 0.574 | 0.703 | 0.555 | 0.569 | 0.597 | |
| 8 | 0.704 | 0.662 | 0.651 | 0.742 | 0.691 | 0.660 | 0.582 | 0.715 | 0.608 | 0.592 | 0.747 | |
| 9 | 0.461 | 0.404 | 0.460 | 0.576 | 0.483 | 0.517 | 0.508 | 0.511 | 0.241 | 0.269 | 0.368 | |
| 10 | 0.485 | 0.440 | 0.428 | 0.443 | 0.465 | 0.395 | 0.379 | 0.410 | 0.228 | 0.276 | 0.232 | |
| 11 | 0.602 | 0.691 | 0.482 | 0.702 | 0.713 | 0.604 | 0.521 | 0.534 | 0.340 | 0.370 | 0.581 | |
| 12 | 0.571 | 0.625 | 0.471 | 0.725 | 0.664 | 0.604 | 0.537 | 0.663 | 0.457 | 0.305 | 0.571 |
Table 4 The ecological niche similarity ratio and overlap value of dominant plant species
| 编号No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.786 | 0.821 | 0.801 | 0.813 | 0.860 | 0.677 | 0.814 | 0.747 | 0.829 | 0.770 | 0.743 | |
| 2 | 0.782 | 0.759 | 0.793 | 0.848 | 0.810 | 0.829 | 0.761 | 0.651 | 0.749 | 0.880 | 0.809 | |
| 3 | 0.752 | 0.698 | 0.634 | 0.626 | 0.674 | 0.713 | 0.689 | 0.682 | 0.671 | 0.565 | 0.561 | |
| 4 | 0.790 | 0.786 | 0.683 | 0.805 | 0.832 | 0.805 | 0.846 | 0.919 | 0.747 | 0.886 | 0.930 | |
| 5 | 0.807 | 0.845 | 0.678 | 0.810 | 0.807 | 0.777 | 0.792 | 0.776 | 0.790 | 0.905 | 0.857 | |
| 6 | 0.834 | 0.788 | 0.713 | 0.818 | 0.788 | 0.740 | 0.739 | 0.811 | 0.655 | 0.749 | 0.761 | |
| 7 | 0.579 | 0.711 | 0.665 | 0.697 | 0.669 | 0.652 | 0.574 | 0.703 | 0.555 | 0.569 | 0.597 | |
| 8 | 0.704 | 0.662 | 0.651 | 0.742 | 0.691 | 0.660 | 0.582 | 0.715 | 0.608 | 0.592 | 0.747 | |
| 9 | 0.461 | 0.404 | 0.460 | 0.576 | 0.483 | 0.517 | 0.508 | 0.511 | 0.241 | 0.269 | 0.368 | |
| 10 | 0.485 | 0.440 | 0.428 | 0.443 | 0.465 | 0.395 | 0.379 | 0.410 | 0.228 | 0.276 | 0.232 | |
| 11 | 0.602 | 0.691 | 0.482 | 0.702 | 0.713 | 0.604 | 0.521 | 0.534 | 0.340 | 0.370 | 0.581 | |
| 12 | 0.571 | 0.625 | 0.471 | 0.725 | 0.664 | 0.604 | 0.537 | 0.663 | 0.457 | 0.305 | 0.571 |
方差比率 Variance ratio (VR) | 检验统计量 Statistic (W) | 卡方临界值χ2 threshold | 检验结果 Inspection result | |
|---|---|---|---|---|
| (0.05,162) | (0.95,162) | |||
| 0.0048 | 0.7795 | 133.5725 | 192.7001 | 显著负联结Significant negative correlation |
Table 5 The overall association of dominant plant species
方差比率 Variance ratio (VR) | 检验统计量 Statistic (W) | 卡方临界值χ2 threshold | 检验结果 Inspection result | |
|---|---|---|---|---|
| (0.05,162) | (0.95,162) | |||
| 0.0048 | 0.7795 | 133.5725 | 192.7001 | 显著负联结Significant negative correlation |
| 编号No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | - | ||||||||||
| 3 | - | - | |||||||||
| 4 | - | - | - | ||||||||
| 5 | - | + | - | - | |||||||
| 6 | + | - | - | + | - | ||||||
| 7 | - | + | + | - | - | - | |||||
| 8 | - | - | - | + | - | - | - | ||||
| 9 | - | - | - | + | - | + | + | + | |||
| 10 | - | - | - | - | - | - | - | - | - | ||
| 11 | - | + | - | + | + | - | - | - | - | - | |
| 12 | - | - | - | + | + | - | - | + | +* | -* | +* |
Table 6 The inspection results of interspecific associations χ2 of dominant plants
| 编号No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | - | ||||||||||
| 3 | - | - | |||||||||
| 4 | - | - | - | ||||||||
| 5 | - | + | - | - | |||||||
| 6 | + | - | - | + | - | ||||||
| 7 | - | + | + | - | - | - | |||||
| 8 | - | - | - | + | - | - | - | ||||
| 9 | - | - | - | + | - | + | + | + | |||
| 10 | - | - | - | - | - | - | - | - | - | ||
| 11 | - | + | - | + | + | - | - | - | - | - | |
| 12 | - | - | - | + | + | - | - | + | +* | -* | +* |
| 处理Treatment | 禾本科Poaceae | 莎草科Cyperaceae | 豆科Fabaceae | 杂类草Forbs |
|---|---|---|---|---|
| NG | 0.389±0.018Abc | 0.243±0.018Ca | 0.056±0.009Dab | 0.312±0.013Bab |
| SG | 0.437±0.021Aab | 0.263±0.013Ba | 0.048±0.008Cab | 0.251±0.019Bcd |
| MG1∶6 | 0.473±0.020Aa | 0.258±0.019Ba | 0.037±0.005Cb | 0.232±0.016Bd |
| MG1∶4 | 0.374±0.012Ac | 0.289±0.012Ba | 0.048±0.005Cab | 0.289±0.015Babc |
| MG1∶2 | 0.375±0.021Ac | 0.243±0.015Ba | 0.048±0.004Cab | 0.334±0.018Aa |
| YG | 0.397±0.011Abc | 0.273±0.011Ba | 0.060±0.009Ca | 0.270±0.013Bbcd |
Table 7 Effect of different livestock assembly grazing on the importance values of vegetation functional groups
| 处理Treatment | 禾本科Poaceae | 莎草科Cyperaceae | 豆科Fabaceae | 杂类草Forbs |
|---|---|---|---|---|
| NG | 0.389±0.018Abc | 0.243±0.018Ca | 0.056±0.009Dab | 0.312±0.013Bab |
| SG | 0.437±0.021Aab | 0.263±0.013Ba | 0.048±0.008Cab | 0.251±0.019Bcd |
| MG1∶6 | 0.473±0.020Aa | 0.258±0.019Ba | 0.037±0.005Cb | 0.232±0.016Bd |
| MG1∶4 | 0.374±0.012Ac | 0.289±0.012Ba | 0.048±0.005Cab | 0.289±0.015Babc |
| MG1∶2 | 0.375±0.021Ac | 0.243±0.015Ba | 0.048±0.004Cab | 0.334±0.018Aa |
| YG | 0.397±0.011Abc | 0.273±0.011Ba | 0.060±0.009Ca | 0.270±0.013Bbcd |
| 1 | Stevens N, Bond W, Feurdean A, et al. Grassy ecosystems in the Anthropocene. Annual Review of Environment and Resources, 2022, 47(1): 261-289. |
| 2 | Zhao G L. Trends in grassland science: Based on the shift analysis of research themes since the early 1900s. Fundamental Research, 2023, 3(2): 201-208. |
| 3 | Olofsson J. Effects of simulated reindeer grazing, trampling, and waste products on nitrogen mineralization and primary production. Arctic, Antarctic, and Alpine Research, 2009, 41(3): 330-338. |
| 4 | Bullock J M, Pakeman R J. Grazing of lowland heath in England: Management methods and their effects on healthland vegetation. Biological Conservation, 1997, 79(1): 1-13. |
| 5 | Rook A J, Dumont B, Isselstein J, et al. Matching type of livestock to desired biodiversity outcomes in pastures-a review. Biological Conservation, 2004, 119(2): 137-150. |
| 6 | Olofsson J, Hulme P E, Suominen O O. Importance of large and small mammalian herbivores for the plant community structure in the forest tundra ecotone. Oikos, 2004, 106(2): 324-334. |
| 7 | Han O, Ritchie M E. Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution, 1998, 13(7): 261-265. |
| 8 | Sitters J, Olde Venterink H. The need for a novel integrative theory on feedbacks between herbivores, plants and soil nutrient cycling. Plant and Soil, 2015, 396: 421-426. |
| 9 | Wang L, Delgado-Baquerizo M, Wang D, et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Science, 2019, 116(13): 6187-6192. |
| 10 | Wang L, Zhang M N, Xu M, et al. A scientific basis for promoting grassland ecosystem multifunctionality by diversifying grazing livestock: a review. Chinese Science Bulletin, 2021, 66(30): 3791-3798. |
| 王岭, 张敏娜, 徐曼, 等. 草地多功能提升的多样化家畜放牧理论及应用. 科学通报, 2021, 66(30): 3791-3798. | |
| 11 | Dueñas M A, Hemming D J, Roberts A, et al. The threat of invasive species to IUCN-listed critically endangered species: a systematic review. Global Ecology and Conservation, 2021, 26: e01476. |
| 12 | Ye P C, Zhang G F, Zhao X, et al. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: a case study of Northwest Yunnan, China. Ecology and Evolution, 2021, 11(19): 13052-13067. |
| 13 | Isbell F, Craven D, Connolly J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526(7574): 574-577. |
| 14 | Tilman D, Downing J A. Biodiversity and stability in grasslands. Nature, 1994, 367(6461): 363-365. |
| 15 | Loreau M, De Mazancourt C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 2013, 16(S1): 106-115. |
| 16 | Dale M R. Spatial pattern analysis in plant ecology. Cambridge: Cambridge University Press, 2000: 1-2. |
| 17 | Li Y, Hu X K, Wei H D, et al. Spatial patterns of the main populations of the natural vegetation community in the south margin area of Tenggeli Desert. Journal of Northwest Forestry University, 2017, 32(2): 67-72. |
| 李亚, 胡小柯, 魏怀东, 等. 腾格里沙漠南缘天然群落主要种群空间分布格局研究. 西北林学院学报, 2017, 32(2): 67-72. | |
| 18 | May F, Huth A, Wiegand T. Moving beyond abundance distributions: neutral theory and spatial patterns in a tropical forest. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1802): 20141657. |
| 19 | Grinnell J. The niche-relationships of the California thrasher. The Auk, 1917, 34(4): 427-433. |
| 20 | Levins R. Evolution in changing environments. Princeton: Princeton University Press, 1968: 178-213. |
| 21 | May R M. On the theory of niche overlap. Theoretical Population Biology, 1974, 5(1): 297-332. |
| 22 | Laland K N, Odling-Smee F J, Feldman M W. Evolutionary consequences of niche construction: a theoretical investigation using two-locus theory. Journal of Evolutionary Biology, 1996, 9(3): 293-316. |
| 23 | Pulla S, Suresh H S, Dattaraja H S, et al. Multidimensional tree niches in a tropical dry forest. Ecology, 2017, 98(5): 1334-1348. |
| 24 | Ma Y M, Li Q H, Pan S P, et al. Niche and interspecific associations of Pseudoanabaena limnetica-exploring the influencing factors of its succession stage. Ecological Indicators, 2022, 138: 108806. |
| 25 | Ruifrok J L, Postma F, Olff H, et al. Scale-dependent effects of grazing and topographic heterogeneity on plant species richness in a Dutch salt marsh ecosystem. Applied Vegetation Science, 2014, 17(4): 615-624. |
| 26 | Meyers L M, Dekeyser E S, Norland J E. Differences in spatial autocorrelation (SAc), plant species richness and diversity, and plant community composition in grazed and ungrazed grasslands along a moisture gradient, North Dakota, USA. Applied Vegetation Science, 2014, 17(1): 53-62. |
| 27 | Alrababah M A, Alhamad M A, Suwaileh M, et al. Biodiversity of semi-arid Mediterranean grasslands: impact of grazing and afforestation. Applied Vegetation Science, 2007, 10(2): 257-264. |
| 28 | Wu Y L, Wei Z J, Yun X J, et al. Effects of continuous grazing on niche and ecological attribute of plant populations in Stipa breviflora desert steppe. Chinese Journal of Grassland, 2018, 40(2): 81-88. |
| 吴艳玲, 卫智军, 运向军, 等. 放牧对短花针茅荒漠草原植物种群生态位及生态属性的影响. 中国草地学报, 2018, 40(2): 81-88. | |
| 29 | Zheng W, Dong Q M, Li S X, et al. Effects of grazing on niche of major plant populations in alpine steppe in Qinghai Lake region. Pratacultural Science, 2013, 30(12): 2040-2046. |
| 郑伟, 董全民, 李世雄, 等. 放牧对环青海湖高寒草原主要植物种群生态位的影响. 草业科学, 2013, 30(12): 2040-2046. | |
| 30 | Dong Q M, Zhao X Q, Ma Y S, et al. Niche of main plant populations on a warm-seasonal pastureland of alpine Kobrecia parva meadow. Chinese Journal of Ecology, 2006, 25(11): 1323-1327. |
| 董全民, 赵新全, 马玉寿, 等. 高寒小嵩草草甸暖季草场主要植物种群的生态位. 生态学杂志, 2006, 25(11): 1323-1327. | |
| 31 | Wang X F, Wu Y X, Xiao H L, et al. Features of soil aggregates and plant interspecific affinity along degraded alpine grasslands in Three Rivers region. Acta Agrestia Sinica, 2021, 29(9): 2001-2009. |
| 王晓芬, 吴玉鑫, 肖海龙, 等. 三江源退化高寒草原植物种间亲和性和土壤团聚体特征. 草地学报, 2021, 29(9): 2001-2009. | |
| 32 | Feng B, Dong Q M, Liu W T, et al. Response mechanisms of Kobresia humilis to grazing of yaks and Tibetan sheep. Pratacultural Science, 2022, 39(6): 1129-1139. |
| 冯斌, 董全民, 刘文亭, 等. 矮生嵩草对牦牛和藏羊放牧的响应机制. 草业科学, 2022, 39(6): 1129-1139. | |
| 33 | Li J T, Mu J, Shen K P, et al. Niche and interspecific association of dominant woody plants in Camellia luteoflora community. Acta Ecologica Sinica, 2024, 44(1): 283-294. |
| 李锦婷, 穆君, 申开平, 等. 小黄花茶群落优势木本植物生态位及种间联结性. 生态学报, 2024, 44(1): 283-294. | |
| 34 | Costa D S, Gerschlauer F, Kiese R, et al. Plant niche breadths along environmental gradients and their relationship to plant functional traits. Diversity and Distributions, 2018, 24(12): 1869-1882. |
| 35 | Chen B, Zhou X M. Analyses of niche breadths and overlaps of several plant species in three Kobresia communities of an alpine meadow. Acta Phytoecologica Sinica, 1995, 19(2): 158-169. |
| 陈波, 周兴民. 三种嵩草群落中若干植物种的生态位宽度与重叠分析. 植物生态学报, 1995, 19(2): 158-169. | |
| 36 | Altesor A, Oesterheld M, Leoni E, et al. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecology, 2005, 179(1): 83-91. |
| 37 | Augustine D J, Derner J D, Milchunas D, et al. Grazing moderates increases in C3 grass abundance over seven decades across a soil texture gradient in shortgrass steppe. Journal of Vegetation Science, 2017, 28(3): 562-572. |
| 38 | Huston M. A general hypothesis of species diversity. American Naturalist, 1979, 113(1): 81-101. |
| 39 | Grime J P. Control of species density in herbaceous vegetation. Journal of Environmental Management, 1973, 1: 151-167. |
| 40 | Connell J H. Diversity in tropical rain forests and coral reefs. Science, 1978, 199(4335): 1302-1310. |
| 41 | Wu N, Liu J, Yan Z. Grazing intensity on the plant diversity of alpine meadow in the eastern Tibetan plateau. Rangifer, 2004, 24(4): 9-15. |
| 42 | Ren H, Schönbach P, Wan H, et al. Effects of grazing intensity and environmental factors on species composition and diversity in typical steppe of Inner Mongolia, China. PLoS One, 2012, 7(12): e52180. |
| 43 | Yang D L, Han G D, Hu Y G, et al. Effects of grazing intensity on plant diversity and aboveground biomass of Stipa baicalensis grassland. Chinese Journal of Ecology, 2006, 25(12): 1470-1475. |
| 杨殿林, 韩国栋, 胡跃高, 等. 放牧对贝加尔针茅草原群落植物多样性和生产力的影响. 生态学杂志, 2006, 25(12): 1470-1475. | |
| 44 | Deng L, Sweeney S, Shangguan Z. Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe. Grass and Forage Science, 2014, 69(3): 524-533. |
| 45 | Zhao L P, Gillet F. Long-term effects of grazing exclusion on aboveground and belowground plant species diversity in a steppe of the Loess Plateau, China. Plant Ecology & Evolution, 2011, 144(3): 313-320. |
| 46 | Wang Z W. Effect of stocking rate on ecosystem stability of Stipa breviflora desert steppe. Hohhot: Inner Mongolia Agricultural University, 2009. |
| 王忠武. 载畜率对短花针茅荒漠草原生态系统稳定性的影响. 呼和浩特: 内蒙古农业大学, 2009. | |
| 47 | Olofsson J. Plant diversity and resilience to reindeer grazing. Arctic Antarctic & Alpine Research, 2006, 38(1): 131-135. |
| [1] | De-yu YANG, Wen-zhi HUANG, Yu-zhe FENG, Bin XUE, Xiao-wei ZHANG, Zhan-hong CUI. Effects of mineral salt brick supplementation in the warm season on growth performance, rumen fermentation, blood, and hair mineral content of grazing yaks [J]. Acta Prataculturae Sinica, 2024, 33(7): 105-118. |
| [2] | Feng-shuo ZHANG, Qiu-rong JI, Ting-li HE, Qu-yang-ang-mao SU, Zhi-you WANG, Sheng-zhen HOU, lin-Sheng GUI. Effect of different ratios of amino acids in low-protein diets on muscle quality, amino acid and fatty acid composition, and vitamin and mineral contents of the longissimus dorsi muscle in Tibetan sheep [J]. Acta Prataculturae Sinica, 2024, 33(3): 198-208. |
| [3] | Yong-liang ZHANG, Ze TENG, Feng HAO, Tie-feng YU, Yu-xia ZHANG. Effects of different mixed sowing patterns and sowing ratios of alfalfa on grassland productivity and community stability in grass-legume mixtures [J]. Acta Prataculturae Sinica, 2024, 33(2): 185-197. |
| [4] | Xiao-lei ZHOU, Fu-qiang YANG, Ming-jun WANG, Hai-xia HUANG, Qing TIAN, Xu-jiao ZHOU, An ZHAO, Wan-peng HE, Yan-li ZHAO, Li-hong JIANG. Important species’ niche characteristics of population in herbaceous communities at Picea asperata-Abies fargesii forest burned area on the northeastern margin of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2023, 32(7): 23-37. |
| [5] | Shi-long LEI, Li-rong LIAO, Jie WANG, Lu ZHANG, Zhen-cheng YE, Guo-bin LIU, Chao ZHANG. The diversity-Godron stability relationship of alpine grassland and its environmental drivers [J]. Acta Prataculturae Sinica, 2023, 32(3): 1-12. |
| [6] | Li ZHOU, Sheng-zhen HOU, Zhi-you WANG, Bao-chun YANG, Li-juan HAN, Lin-sheng GUI. Changes in small intestinal morphology, digestive enzyme activity and antioxidant enzyme activities of female Tibetan sheep after substituting the maize component of a concentrate diet with palm meal [J]. Acta Prataculturae Sinica, 2023, 32(3): 118-127. |
| [7] | Bin FENG, Xiao-xia YANG, Wen-ting LIU, Yu-zhen LIU, Wei-dong LV, Zhen-xiang ZHANG, Cai-cai SUN, Qin-yuan ZHOU, Fang-cao WANG, Ze-hang YU, Quan-min DONG. Effects of different livestock assembly on the productivity of yak and Tibetan sheep in warm-season pastures [J]. Acta Prataculturae Sinica, 2023, 32(12): 58-67. |
| [8] | Meng-jun LIU, Yue REN. Meat quality and nutritional indexes of three muscles of the F1 generation of crossbred sheep (Suffolk×river valley-type Tibetan) raised under grazing conditions [J]. Acta Prataculturae Sinica, 2023, 32(11): 140-154. |
| [9] | Dong-wen DAI, Kai-yue Pang, xun WANG, Ying-kui YANG, Sha-tuo CHAI, Shu-xiang WANG. Effects of different concentrate supplement levels on rumen fermentation and microbial community structure of grazing yaks in the warm season [J]. Acta Prataculturae Sinica, 2022, 31(5): 169-177. |
| [10] | Xun-gang WANG, Xiao-ling ZHANG, Tian-wei XU, Yuan-yue GENG, Lin-yong HU, Na ZHAO, Hong-jin LIU, Sheng-ping KANG, Shi-xiao XU. Effects of dietary protein levels on ruminal fungal community structure and function in Tibetan sheep [J]. Acta Prataculturae Sinica, 2022, 31(2): 182-191. |
| [11] | Li ZHOU, Zhi-you WANG, Bao-chun YANG, Sheng-zhen HOU, Feng-shuo ZHANG, Lin-sheng GUI. Effects of dietary neutral detergent fiber on muscle fiber type composition and meat quality characteristics of black Tibetan sheep [J]. Acta Prataculturae Sinica, 2022, 31(11): 75-85. |
| [12] | Jiang-wei LI, Zhi-you WANG, Sheng-zhen HOU, Yun LEI, Jian-lei JIA, Li ZHOU, Lin-sheng GUI. Effects of dietary concentrate∶roughage ratio on rumen morphology and microbial flora in fattening Tibetan sheep [J]. Acta Prataculturae Sinica, 2021, 30(3): 100-109. |
| [13] | TU Rui, MIAO Jian-jun, PENG Zhong-li, GAO Yan-hua, BAI Xue, XIE Xin-ting. An in vitro study of dietary concentrate∶forage ratio and small peptide supplementation effects on ruminal fermentation parameters of yaks [J]. Acta Prataculturae Sinica, 2020, 29(3): 78-88. |
| [14] | XU Hai-peng, YU Cheng, SHU Chao-cheng, JIN Shao-hong, PANG Xiao-pan, GUO Zheng-gang. The effect of plateau pika disturbance on plant community diversity and stability in an alpine meadow [J]. Acta Prataculturae Sinica, 2019, 28(5): 90-99. |
| [15] | JIAO Ting, WU Tie-cheng, WU Jian-ping, ZHAO Sheng-guo, LEI Zhao-min, LIANG Jian-yong, RAN Fu, JIU MAI Zha-xi, LIU Zhen-heng. A comparative study on digestibility and feed intake of Tibetan sheep of different types [J]. Acta Prataculturae Sinica, 2019, 28(5): 100-108. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||