Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (3): 118-127.DOI: 10.11686/cyxb2022126
Li ZHOU1,2(), Sheng-zhen HOU1, Zhi-you WANG1, Bao-chun YANG1, Li-juan HAN1, Lin-sheng GUI1()
Received:
2022-03-18
Revised:
2022-05-23
Online:
2023-03-20
Published:
2022-12-30
Contact:
Lin-sheng GUI
Li ZHOU, Sheng-zhen HOU, Zhi-you WANG, Bao-chun YANG, Li-juan HAN, Lin-sheng GUI. Changes in small intestinal morphology, digestive enzyme activity and antioxidant enzyme activities of female Tibetan sheep after substituting the maize component of a concentrate diet with palm meal[J]. Acta Prataculturae Sinica, 2023, 32(3): 118-127.
项目 Items | 0~30 d | 31~90 d | ||||||
---|---|---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | 0% | 15% | 18% | 21% | |
原料 Ingredients | ||||||||
燕麦干草 Oat hay (%) | 20.00 | 20.00 | 20.00 | 20.00 | 15.00 | 15.00 | 15.00 | 15.00 |
燕麦青贮 Oat silage (%) | 20.00 | 20.00 | 20.00 | 20.00 | 15.00 | 15.00 | 15.00 | 15.00 |
玉米 Corn (%) | 39.30 | 32.52 | 31.08 | 29.70 | 45.85 | 37.94 | 36.26 | 34.65 |
豆粕Soybean meal (%) | 4.80 | 3.00 | 3.00 | 2.40 | 5.60 | 3.50 | 3.50 | 2.80 |
菜籽粕Soybean meal (%) | 9.60 | 9.00 | 9.00 | 9.00 | 11.20 | 10.50 | 10.50 | 10.50 |
棉籽粕 Rapeseed meal (%) | 2.40 | 2.58 | 2.22 | 2.40 | 2.80 | 3.01 | 2.59 | 2.80 |
棕榈粕 Palm meal (%) | 0.00 | 9.00 | 10.80 | 12.60 | 0.00 | 10.50 | 12.60 | 14.70 |
食盐 NaCl (%) | 0.30 | 0.30 | 0.30 | 0.30 | 0.35 | 0.35 | 0.35 | 0.35 |
石粉Limestone (%) | 0.60 | 0.60 | 0.60 | 0.60 | 0.70 | 0.70 | 0.70 | 0.70 |
预混料 Premix1) (%) | 3.00 | 3.00 | 3.00 | 3.00 | 3.50 | 3.50 | 3.50 | 3.50 |
合计 Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
营养水平 Nutrient levels2) | ||||||||
代谢能 Metabolic energy (ME, MJ·kg-1) | 10.65 | 10.28 | 10.21 | 10.13 | 10.97 | 10.53 | 10.45 | 10.36 |
粗蛋白 Crude protein (CP, %) | 9.22 | 9.21 | 9.21 | 9.21 | 10.62 | 10.61 | 10.61 | 10.61 |
粗脂肪 Ether extract (EE,%) | 1.66 | 2.10 | 2.19 | 2.28 | 1.89 | 2.40 | 2.51 | 2.61 |
粗纤维Coarse fiber (CF,%) | 3.05 | 4.22 | 4.45 | 4.69 | 2.79 | 4.16 | 4.43 | 4.72 |
粗灰分Ash (%) | 1.78 | 1.55 | 1.51 | 1.46 | 1.96 | 1.69 | 1.64 | 1.59 |
钙 Calcium (Ca, %) | 0.32 | 0.31 | 0.31 | 0.31 | 0.37 | 0.36 | 0.36 | 0.36 |
磷Phosphorus (P, %) | 0.26 | 0.23 | 0.22 | 0.21 | 0.30 | 0.26 | 0.25 | 0.25 |
Table 1 Composition and nutrient levels of basal diets (DM basis)
项目 Items | 0~30 d | 31~90 d | ||||||
---|---|---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | 0% | 15% | 18% | 21% | |
原料 Ingredients | ||||||||
燕麦干草 Oat hay (%) | 20.00 | 20.00 | 20.00 | 20.00 | 15.00 | 15.00 | 15.00 | 15.00 |
燕麦青贮 Oat silage (%) | 20.00 | 20.00 | 20.00 | 20.00 | 15.00 | 15.00 | 15.00 | 15.00 |
玉米 Corn (%) | 39.30 | 32.52 | 31.08 | 29.70 | 45.85 | 37.94 | 36.26 | 34.65 |
豆粕Soybean meal (%) | 4.80 | 3.00 | 3.00 | 2.40 | 5.60 | 3.50 | 3.50 | 2.80 |
菜籽粕Soybean meal (%) | 9.60 | 9.00 | 9.00 | 9.00 | 11.20 | 10.50 | 10.50 | 10.50 |
棉籽粕 Rapeseed meal (%) | 2.40 | 2.58 | 2.22 | 2.40 | 2.80 | 3.01 | 2.59 | 2.80 |
棕榈粕 Palm meal (%) | 0.00 | 9.00 | 10.80 | 12.60 | 0.00 | 10.50 | 12.60 | 14.70 |
食盐 NaCl (%) | 0.30 | 0.30 | 0.30 | 0.30 | 0.35 | 0.35 | 0.35 | 0.35 |
石粉Limestone (%) | 0.60 | 0.60 | 0.60 | 0.60 | 0.70 | 0.70 | 0.70 | 0.70 |
预混料 Premix1) (%) | 3.00 | 3.00 | 3.00 | 3.00 | 3.50 | 3.50 | 3.50 | 3.50 |
合计 Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
营养水平 Nutrient levels2) | ||||||||
代谢能 Metabolic energy (ME, MJ·kg-1) | 10.65 | 10.28 | 10.21 | 10.13 | 10.97 | 10.53 | 10.45 | 10.36 |
粗蛋白 Crude protein (CP, %) | 9.22 | 9.21 | 9.21 | 9.21 | 10.62 | 10.61 | 10.61 | 10.61 |
粗脂肪 Ether extract (EE,%) | 1.66 | 2.10 | 2.19 | 2.28 | 1.89 | 2.40 | 2.51 | 2.61 |
粗纤维Coarse fiber (CF,%) | 3.05 | 4.22 | 4.45 | 4.69 | 2.79 | 4.16 | 4.43 | 4.72 |
粗灰分Ash (%) | 1.78 | 1.55 | 1.51 | 1.46 | 1.96 | 1.69 | 1.64 | 1.59 |
钙 Calcium (Ca, %) | 0.32 | 0.31 | 0.31 | 0.31 | 0.37 | 0.36 | 0.36 | 0.36 |
磷Phosphorus (P, %) | 0.26 | 0.23 | 0.22 | 0.21 | 0.30 | 0.26 | 0.25 | 0.25 |
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
绒毛高度Villus height (μm) | 387.38a | 357.34a | 261.56b | 222.75c | 19.36 | 0.029 |
绒毛宽度Villus width (μm) | 116.46Aa | 104.99ABab | 96.94Bb | 79.76Cc | 4.59 | 0.003 |
隐窝深度Crypt depth (μm) | 82.54 | 82.16 | 85.88 | 82.97 | 2.43 | 0.537 |
黏膜厚度Mucosal thickness (μm) | 913.42a | 838.56ab | 800.26ab | 751.80b | 53.99 | 0.019 |
绒毛高度/隐窝深度Villus height/crypt depth (%) | 4.76Aa | 4.40ABab | 3.08BCbc | 2.69Cc | 0.28 | 0.004 |
Table 2 Effect of palm meal instead of corn on duodenal tissue morphology of Tibetan sheep ewe
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
绒毛高度Villus height (μm) | 387.38a | 357.34a | 261.56b | 222.75c | 19.36 | 0.029 |
绒毛宽度Villus width (μm) | 116.46Aa | 104.99ABab | 96.94Bb | 79.76Cc | 4.59 | 0.003 |
隐窝深度Crypt depth (μm) | 82.54 | 82.16 | 85.88 | 82.97 | 2.43 | 0.537 |
黏膜厚度Mucosal thickness (μm) | 913.42a | 838.56ab | 800.26ab | 751.80b | 53.99 | 0.019 |
绒毛高度/隐窝深度Villus height/crypt depth (%) | 4.76Aa | 4.40ABab | 3.08BCbc | 2.69Cc | 0.28 | 0.004 |
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
绒毛高度Villus height (μm) | 324.46ab | 369.23a | 285.82b | 350.39a | 11.32 | 0.019 |
绒毛宽度 Villus width (μm) | 99.10b | 111.13ab | 87.58c | 123.50a | 4.71 | 0.011 |
隐窝深度 Crypt depth (μm) | 94.36ab | 109.77a | 87.30b | 108.05a | 3.49 | 0.028 |
黏膜厚度 Mucosal thickness (μm) | 945.95ab | 1018.53a | 821.82b | 964.61a | 27.67 | 0.045 |
绒毛高度/隐窝深度 Villus height/crypt depth (%) | 3.44 | 3.36 | 3.29 | 3.26 | 0.07 | 0.829 |
Table 3 Effects of palm meal instead of corn on jejunum morphology of Tibetan sheep ewe
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
绒毛高度Villus height (μm) | 324.46ab | 369.23a | 285.82b | 350.39a | 11.32 | 0.019 |
绒毛宽度 Villus width (μm) | 99.10b | 111.13ab | 87.58c | 123.50a | 4.71 | 0.011 |
隐窝深度 Crypt depth (μm) | 94.36ab | 109.77a | 87.30b | 108.05a | 3.49 | 0.028 |
黏膜厚度 Mucosal thickness (μm) | 945.95ab | 1018.53a | 821.82b | 964.61a | 27.67 | 0.045 |
绒毛高度/隐窝深度 Villus height/crypt depth (%) | 3.44 | 3.36 | 3.29 | 3.26 | 0.07 | 0.829 |
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
绒毛高度Villus height (μm) | 298.19ab | 331.57a | 231.24b | 241.45b | 15.24 | 0.015 |
绒毛宽度 Villus width (μm) | 154.61 | 175.51 | 146.52 | 140.84 | 6.25 | 0.227 |
隐窝深度 Crypt depth (μm) | 85.20 | 79.88 | 74.42 | 69.01 | 4.47 | 0.066 |
黏膜厚度 Mucosal thickness (μm) | 769.32a | 793.39a | 531.33b | 523.39b | 47.23 | 0.043 |
绒毛高度/隐窝深度 Villus height/crypt depth (%) | 3.54 | 4.14 | 3.59 | 3.53 | 0.11 | 0.096 |
Table 4 Effect of palm meal instead of corn on ileum morphology of Tibetan sheep ewe
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
绒毛高度Villus height (μm) | 298.19ab | 331.57a | 231.24b | 241.45b | 15.24 | 0.015 |
绒毛宽度 Villus width (μm) | 154.61 | 175.51 | 146.52 | 140.84 | 6.25 | 0.227 |
隐窝深度 Crypt depth (μm) | 85.20 | 79.88 | 74.42 | 69.01 | 4.47 | 0.066 |
黏膜厚度 Mucosal thickness (μm) | 769.32a | 793.39a | 531.33b | 523.39b | 47.23 | 0.043 |
绒毛高度/隐窝深度 Villus height/crypt depth (%) | 3.54 | 4.14 | 3.59 | 3.53 | 0.11 | 0.096 |
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
α-淀粉酶α-amylase (U·L-1) | 178.78b | 199.90a | 179.41b | 172.80b | 3.16 | 0.011 |
纤维素酶Cellulase (CE, U·L-1) | 59.56b | 68.71a | 63.32ab | 64.93a | 1.17 | 0.012 |
脂肪酶Lipase (U·L-1) | 172.60Bb | 235.16Aa | 175.99Bb | 213.23Aa | 6.79 | 0.001 |
胰蛋白酶Trypsin (TPS, U·L-1) | 157.04 | 160.48 | 141.50 | 141.16 | 5.08 | 0.137 |
糜蛋白酶Chymotrypsin (IU·L-1) | 113.81b | 132.86a | 128.53a | 125.98ab | 2.71 | 0.043 |
Table 5 Effect of palm meal instead of corn on jejunum digestive enzyme activity of Tibetan sheep ewe
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
α-淀粉酶α-amylase (U·L-1) | 178.78b | 199.90a | 179.41b | 172.80b | 3.16 | 0.011 |
纤维素酶Cellulase (CE, U·L-1) | 59.56b | 68.71a | 63.32ab | 64.93a | 1.17 | 0.012 |
脂肪酶Lipase (U·L-1) | 172.60Bb | 235.16Aa | 175.99Bb | 213.23Aa | 6.79 | 0.001 |
胰蛋白酶Trypsin (TPS, U·L-1) | 157.04 | 160.48 | 141.50 | 141.16 | 5.08 | 0.137 |
糜蛋白酶Chymotrypsin (IU·L-1) | 113.81b | 132.86a | 128.53a | 125.98ab | 2.71 | 0.043 |
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
总抗氧化能力Total antioxygentic capacity (T-AOC, ng·mL-1) | 12.54 | 15.60 | 15.87 | 14.83 | 0.92 | 0.059 |
丙二醛Malondialdehyde (MDA, nmol·mL-1) | 5.17 | 5.15 | 5.11 | 5.48 | 0.15 | 0.171 |
超氧化物歧化酶Superoxide dismutase (SOD, U·mL-1) | 112.55 | 137.21 | 115.02 | 126.65 | 4.54 | 0.058 |
谷胱甘肽过氧化物酶Glutathione peroxidase (GSH-Px, U·mL-1) | 238.04c | 422.11a | 279.67b | 276.17bc | 16.07 | 0.031 |
过氧化氢酶Catalase (CAT, U·mL-1) | 28.30b | 40.93a | 35.58a | 33.18ab | 1.31 | 0.014 |
Table 6 Effect of palm meal instead of corn on jejunum antioxidant capacity of Tibetan sheep ewe
指标 Indexes | 组别Groups | 标准误 SEM | P值 P-value | |||
---|---|---|---|---|---|---|
0% | 15% | 18% | 21% | |||
总抗氧化能力Total antioxygentic capacity (T-AOC, ng·mL-1) | 12.54 | 15.60 | 15.87 | 14.83 | 0.92 | 0.059 |
丙二醛Malondialdehyde (MDA, nmol·mL-1) | 5.17 | 5.15 | 5.11 | 5.48 | 0.15 | 0.171 |
超氧化物歧化酶Superoxide dismutase (SOD, U·mL-1) | 112.55 | 137.21 | 115.02 | 126.65 | 4.54 | 0.058 |
谷胱甘肽过氧化物酶Glutathione peroxidase (GSH-Px, U·mL-1) | 238.04c | 422.11a | 279.67b | 276.17bc | 16.07 | 0.031 |
过氧化氢酶Catalase (CAT, U·mL-1) | 28.30b | 40.93a | 35.58a | 33.18ab | 1.31 | 0.014 |
1 | Miao J J, Peng Z L, Gao Y H, et al. Effects on production performance, slaughter performance, apparent digestibility of nutrients and meat quality of partial substitution of corn concentrate with highland barley in a yak fattening system. Acta Prataculturae Sinica, 2019, 28(1): 95-107. |
苗建军, 彭忠利, 高彦华, 等. 青稞替代玉米对育肥牦牛生产性能和肉品质的影响. 草业学报, 2019, 28(1): 95-107. | |
2 | Shi P, Wang Y, Lei X T, et al. Advances in application of palm kernel mea. Chinese Journal of Tropical Agriculture, 2017, 37(10): 89-92, 98. |
石鹏, 王永, 雷新涛, 等. 棕榈仁粕的饲料应用进展. 热带农业科学, 2017, 37(10): 89-92, 98. | |
3 | Ahmed M F, Wang S, Zhang Y, et al. Effects of dietary palm kernel meal supplemental level on laying performance, egg quality, organ development and antioxidant function of laying ducks during laying period. Chinese Journal of Animal Nutrition, 2020, 32(3): 1196-1203. |
4 | Fan Q S, Tu Y, Diao Q Y, et al. Effects of palm kernel cake, oil-tea camellia seed cake and tea seed cake supplementation on growth performance, serum antioxidant activity and immune function of meat calves. Chinese Journal of Animal Science, 2018, 54(7): 76-82. |
樊庆山, 屠焰, 刁其玉, 等. 含棕榈仁粕、油茶籽粕或茶籽粕饲粮对3~5月龄犊牛生长性能、抗氧化能力及免疫性能的影响. 中国畜牧杂志, 2018, 54(7): 76-82. | |
5 | Ding C Y. Effect of palm meal in diet on production performance and economic benefits of cows. Feed Research, 2020, 43(11): 34-36. |
丁翠英. 日粮中加入棕榈粕对奶牛生产性能和经济效益的影响. 饲料研究, 2020, 43(11): 34-36. | |
6 | Gao X Y. Growth performance and nutrition digestibility responded to supplementation of palm kernel meal in diet for meat rabbits. China Feed, 2019(2): 68-71. |
高兴宇. 棕榈粕对肉兔生长性能及养分利用率的影响. 中国饲料, 2019(2): 68-71. | |
7 | Wang J Q, Lu D X, Yang H J, et al. Feeding standard of meat-producing sheep and goats, NY-T 816-2004. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2004. |
王加启, 卢德勋, 杨红建, 等. 肉羊饲养标准, NY-T 816-2004. 北京: 中华人民共和国农业部, 2004. | |
8 | Ma Z H. Animal anatomy, histology and embryology (3rd Edition). Beijing: China Agriculture Press, 2001. |
马仲华. 家畜解剖学及组织胚胎学(第3版). 北京: 中国农业出版社, 2001. | |
9 | Zheng C, Li F D, Li F, et al. Effects of adding mannan oligosaccharides to milk replacer on the development of gastrointestinal tract of 7 to 28 days old Hu lambs. Scientia Agricultura Sinica, 2020, 53(2): 398-408. |
郑琛, 李发弟, 李飞, 等. 代乳粉添加甘露寡糖对7~28日龄湖羊羔羊胃肠道发育的影响. 中国农业科学, 2020, 53(2): 398-408. | |
10 | Zhou L, Zhang F S, Zhang C M, et al. Effects of dietary forage to concentrate ratio on gene expression level of nutrient transporter in small intestine of Qinghai Black Tibetan sheep. Journal of Sichuan Agricultural University, 2022, 40(1): 105-110, 136. |
周力, 张峰硕, 张春梅, 等. 日粮精粗比对青海黑藏羊小肠营养物质转运载体基因表达水平的影响. 四川农业大学学报, 2022, 40(1): 105-110, 136. | |
11 | Mccoard S A, Cristobal C O, Knol F W, et al. Impact of early weaning on small intestine, metabolic, immune and endocrine system development, growth and body composition in artificially reared lamb. Journal of Animal Science, 2020, 98(1): 365. |
12 | Singh S, Arthur S, Talukder J, et al. Mast cell regulation of Na-glutamine co-transporters B0AT1 in villus and SN2 in crypt cells during chronic intestinal inflammation.BMC Gastroenterology, 2015, 15: 47. |
13 | Yang C T. Effects of Candida tropicalis and mulberry leaf flavonoids on growth and gastrointestinal development in calves. Beijing: Chinese Academy of Agricultural Sciences, 2016. |
杨春涛. 热带假丝酵母与桑叶黄酮对犊牛生长和胃肠道发育的影响. 北京: 中国农业科学院, 2016. | |
14 | Le G M, Gallois M, Sève B, et al. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. British Journal of Nutrition, 2009, 102(9): 1285-1296. |
15 | Han C X, Zhang C X, Li Y, et al. Study on variations of gastrointestinal development, enzyme activity and fermentation parameters of Hu lambs pre- and post-early weaning. China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4442-4450. |
韩铖星, 张成新, 李勇, 等. 湖羊羔羊早期断奶前后胃肠道发育、酶活性及发酵参数的变化研究. 中国畜牧兽医, 2021, 48(12): 4442-4450. | |
16 | Dong J J, Gao Y X, Li Y, et al. Effects of yeast polysaccharide on gastrointestinal development and digestive enzyme activity of sucking calves. Chinese Journal of Animal Nutrition, 2018, 30(12): 5247-5254. |
董金金, 高艳霞, 李妍, 等. 酵母多糖对哺乳犊牛胃肠道发育及消化酶活性的影响. 动物营养学报, 2018, 30(12): 5247-5254. | |
17 | Jing X P, Wang Z S, Peng Q H, et al. Effects of supplementation on digestive enzyme activities in digestive tract and apparent digestibility of Tibetan sheep in cold season.Chinese Journal of Animal Nutrition, 2016, 28(8): 2404-2413. |
景小平, 王之盛, 彭全辉, 等. 冷季补饲对藏羊消化道消化酶活性及表观消化率的影响. 动物营养学报, 2016, 28(8): 2404-2413. | |
18 | Tang W D. Effect of protease on digestive enzyme activity of grass flower fish. Jiangxi Fishery Science and Technology, 2022(2): 43-44, 47. |
唐伟东. 蛋白酶对禾花鱼消化酶活性的影响. 江西水产科技, 2022(2): 43-44, 47. | |
19 | Wang Y, Zhao F, Zhang H, et al. Effects of tannic acid on digestive enzyme activity and digestibility of dietary crude protein in simulated gastric and intestinal digestion for growing pigs. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(6): 1332-1341. |
王亚, 赵峰, 张虎, 等. 单宁酸对生长猪胃-小肠仿生消化中消化酶活性及饲粮粗蛋白消化率的影响. 畜牧兽医学报, 2020, 51(6): 1332-1341. | |
20 | Zhong G F, Zhou H Q, Hua X M. Effect of corn gluten meal partially replaced fish meal on digestive enzymes activities in puffer (Fugu obscurus). Journal of Shanghai Ocean University, 2019, 28(2): 227-236. |
钟国防, 周洪琪, 华雪铭. 玉米蛋白粉替代鱼粉对暗纹东方鲀消化酶活性的影响. 上海海洋大学学报, 2019, 28(2): 227-236. | |
21 | Zhou L Q, Wang K R, Liu Y H, et al. Effects of DON on immune and antioxidant levels in serum and different small intestine segments of mice. Heilongjiang Animal Science and Veterinary Medicine, 2022, 639(3): 90-95. |
周令强, 王凯茹, 刘艳华, 等. 呕吐毒素对小鼠血清和不同小肠段免疫水平及抗氧化水平的影响. 黑龙江畜牧兽医, 2022, 639(3): 90-95. | |
22 | Zhou L, Gao Z H, Zhang C M, et al. Effects of different NFC/NDF diets on antioxidant function, myofiber type composition and related gene expression of Qinghai Tibetan ewes. Journal of Sichuan Agricultural University, 2021, 39(5): 639-645. |
周力, 高占红, 张春梅, 等. 不同NFC/NDF饲粮对青海藏羊育成母羊肌肉抗氧化功能、肌纤维类型组成及其相关基因表达的影响. 四川农业大学学报, 2021, 39(5): 639-645. | |
23 | Wang Y N, Qi M J, Zhou Y X, et al. Effects of different feeding methods of Lycium barbarum residue on digestion and metabolism, antioxidant ability and immune performance of fattening Tan Sheep.Chinese Journal of Animal Nutrition, 2021, 33(12): 6919-6929. |
王亚妮, 齐明江, 周玉香, 等. 枸杞渣不同饲喂方式对育肥滩羊消化代谢、抗氧化能力与免疫性能的影响. 动物营养学报, 2021, 33(12): 6919-6929. | |
24 | Cui Y Y, Han G F, Li Y S, et al. Effects of in ovo leucine injection on growth performance, intestinal tissue morphology and antioxidant capacity of female broilers under chronic heat stress. Chinese Journal of Animal Nutrition, 2021, 33(11): 6173-6183. |
崔洋洋, 韩国锋, 李延森, 等. 卵内注射亮氨酸对慢性热应激雌性肉鸡生长性能、肠道组织形态和抗氧化能力的影响. 动物营养学报, 2021, 33(11): 6173-6183. | |
25 | Jin S X, Zhang G Z, Wang X Q, et al. The effect of buzhongyiqi mixed fermenting agent on the intestinal environment and mucous membrane structure in broilers. Chinese Journal of Veterinary Medicine, 2019, 55(5): 31-35, 121. |
靳双星, 张桂枝, 王学强, 等. 补中益气汤发酵制剂对肉鸡肠道环境和黏膜结构的影响. 中国兽医杂志, 2019, 55(5): 31-35, 121. | |
26 | Jiang Y X, Li S M, Fan J H, et al. Effect of Bacillus subtilis on pH value of intestinal tract, utilization efficiency of nutrient, ammonia and hydrogen sulfide released from faeces of Rugao yellow chicken. China Poultry, 2018, 40(19): 32-35. |
蒋一秀, 李尚民, 范建华, 等. 枯草芽孢杆菌对如皋黄鸡肠道pH值、养分表观消化率及粪便中氨气和硫化氢释放量的影响. 中国家禽, 2018, 40(19): 32-35. | |
27 | Chen Z H, Deng J L. Effects of composite antibacterial peptide on intestinal microflora and pH value of weaning piglets. Animal Husbandry & Veterinary Medicine, 2017, 49(11): 109-113. |
陈张华, 邓俊良. 复合抗菌肽对断奶仔猪肠道菌群和pH值的影响. 畜牧与兽医, 2017, 49(11): 109-113. | |
28 | Andersen P. Bovine endotoxicosis-some aspects of relevance to production diseases: A review. Acta Veterinaria Scandinavica, 2003, 98(Supple 1): 141-155. |
29 | Rodrguez-lecompte J, Kroeker A, Ceballos-mrquez A, et al. Evaluation of the systemic innate immune response and metabolic alterations of nonlactating cows with diet-induced subacute ruminal acidosis. Journal of Dairy Science, 2014, 97(12): 7777-7787. |
30 | Pi D A, Liu Y L, Shi H F, et al. Dietary supplementation of aspartate enhances intestinal integrity and energy status in weanling piglets after lipopolysaccharide challenge. The Journal of Nutritional Biochemistry, 2014, 25(4): 456-462. |
[1] | Lu-ping WEI, Qing-ping ZHOU, Fang LIU, Ji-zhen LIN, Yuan ZHAN, Hui WANG. Variation in ear characteristics and estimation of photosynthetic contributions to oat ear development using techniques of ear shading and glume removal [J]. Acta Prataculturae Sinica, 2023, 32(2): 110-118. |
[2] | Peng-chong DU, Yu-zhen PAN, Shuang-li HOU, Zhi-hui WANG, Hong-yi WANG. Effects of nitrogen and phosphorus addition on litter decomposition in Hulunber steppe [J]. Acta Prataculturae Sinica, 2023, 32(2): 44-53. |
[3] | Xiao-jin ZHOU, Hai-xia HUANG, Jun-xia ZHANG, Bu-dong MA, Gang LU, Jian-wei QI, Ting ZHANG, Zhu ZHU. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings [J]. Acta Prataculturae Sinica, 2023, 32(2): 75-83. |
[4] | Hao-yu XU, Ying ZHAO, Qian RUAN, Xiao-lin ZHU, Bao-qiang WANG, Xiao-hong WEI. Resistance of quinoa seedlings under different salt-alkali stress levels [J]. Acta Prataculturae Sinica, 2023, 32(1): 122-130. |
[5] | Wen-wu QIAN, Peng GUO, Hui-sen ZHU, Shi-min ZHANG, De-ying LI. Responses of leaf epidermis, anatomical structure and photosynthetic characteristics of Poa pratensis to different nitrogen application level [J]. Acta Prataculturae Sinica, 2023, 32(1): 131-143. |
[6] | Cai-xia ZHANG, Xiang-ling FANG. Research advances in disease resistance mechanism of herbaceous plants [J]. Acta Prataculturae Sinica, 2023, 32(1): 203-215. |
[7] | Ya-ling HU, Eerdun HASI, Liang MAN, Yi YANG, Ping ZHANG. Vegetation responses to sand source and supply volume in Caragana microphylla shrubland [J]. Acta Prataculturae Sinica, 2023, 32(1): 26-35. |
[8] | Rong RONG, Bin SUN, Zhi-tao WU, Zhi-hai GAO, Zi-qiang DU, Si-han TENG. Study on above-ground biomass measurement of Caragana microphylla in shrub-encroached grassland [J]. Acta Prataculturae Sinica, 2023, 32(1): 36-47. |
[9] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[10] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[11] | Li-miao ZHANG, Xue TAN, Zhi DONG, Jie ZHENG, Zhong-xun YUAN, Chang-xiao LI. Effects of Alternanthera philoxeroides invasion on plant diversity in the riparian zones of downtown Chongqing in the Three Gorges Reservoir area [J]. Acta Prataculturae Sinica, 2022, 31(9): 13-25. |
[12] | Jia-ming YAO, Yue HE, Huan-huan HAO, Xin-ru HUANG, Jing ZHANG, Bin XU. Characterization and transcriptional regulation analysis of the LpPIL5 gene in perennial ryegrass [J]. Acta Prataculturae Sinica, 2022, 31(9): 155-167. |
[13] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[14] | Dong-qing FU, Chun-ying JIA, Li ZHANG, Fan-fan ZHANG, Chun-hui MA. Agronomic traits and fermentation quality of maize silage harvested at different grain-development stages in irrigated drought areas of southern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 111-125. |
[15] | Xiao-ting LIU, Tuo YAO. Screening, identification and characteristics of low-temperature-tolerant plant growth promoting rhizobacteria in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(8): 178-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||