Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (9): 111-120.DOI: 10.11686/cyxb2024390
Hong HE1(
), Jin LI1, Qiu-yi TAN2, Yi-ping LIU1, Gui-lin LONG1, Feng PAN1, Wen-fu ZHANG3, Xing-yuan LIU4, Li ZHOU5, Yun-shu ZHANG1(
)
Received:2024-10-12
Revised:2024-12-13
Online:2025-09-20
Published:2025-07-02
Contact:
Yun-shu ZHANG
Hong HE, Jin LI, Qiu-yi TAN, Yi-ping LIU, Gui-lin LONG, Feng PAN, Wen-fu ZHANG, Xing-yuan LIU, Li ZHOU, Yun-shu ZHANG. Comprehensive evaluation of regional trials for hulless barley based on AMMI model and GGE biplot[J]. Acta Prataculturae Sinica, 2025, 34(9): 111-120.
试点编号 Location code | 试点名称 Location name | 试点地理坐标 Location geographic coordinates | 试点海拔 Location altitude (m) | 年平均气温 Annual average temperature (℃) | 年降水量 Annual precipitation (mm) |
|---|---|---|---|---|---|
| E1 | 阿坝州农业科学技术研究所(马尔康市)Aba Tibetan and Qiang Autonomous Prefecture Institute of Agricultural Science and Technology (Barkam City) | 31°53′40″ N, 102°07′51″ E | 2585.90 | 9.9 | 460.7 |
| E2 | 若尔盖县科学技术和农业畜牧局农技站(若尔盖县)Zoige County Science and Technology and Agricultural Animal Husbandry Bureau Agro-technical Station (Zoige County) | 33°41′33″ N, 103°24′54″ E | 2841.40 | 6.6 | 509.8 |
| E3 | 壤塘县科学技术和农业畜牧局(壤塘县)Zamtang County Science and Technology and Agriculture Animal Husbandry Bureau (Zamtang County) | 32°04′30″ N, 100°58′57″ E | 3280.50 | 7.1 | 407.2 |
| E4 | 阿坝县科学技术和农业畜牧水务局(阿坝县)Aba County Science and Technology and Agriculture Animal Husbandry Water Bureau (Aba County) | 32°55′11″ N, 101°40′09″ E | 3261.40 | 5.3 | 663.9 |
| E5 | 松潘县科学技术和农业畜牧局种子站(松潘县)Songpan County Science and Technology and Agricultural Animal Husbandry Bureau Seed Station (Songpan County) | 32°51′40″ N, 103°39′09″ E | 3081.00 | 6.4 | 638.2 |
Table 1 Basic information of 5 test sites
试点编号 Location code | 试点名称 Location name | 试点地理坐标 Location geographic coordinates | 试点海拔 Location altitude (m) | 年平均气温 Annual average temperature (℃) | 年降水量 Annual precipitation (mm) |
|---|---|---|---|---|---|
| E1 | 阿坝州农业科学技术研究所(马尔康市)Aba Tibetan and Qiang Autonomous Prefecture Institute of Agricultural Science and Technology (Barkam City) | 31°53′40″ N, 102°07′51″ E | 2585.90 | 9.9 | 460.7 |
| E2 | 若尔盖县科学技术和农业畜牧局农技站(若尔盖县)Zoige County Science and Technology and Agricultural Animal Husbandry Bureau Agro-technical Station (Zoige County) | 33°41′33″ N, 103°24′54″ E | 2841.40 | 6.6 | 509.8 |
| E3 | 壤塘县科学技术和农业畜牧局(壤塘县)Zamtang County Science and Technology and Agriculture Animal Husbandry Bureau (Zamtang County) | 32°04′30″ N, 100°58′57″ E | 3280.50 | 7.1 | 407.2 |
| E4 | 阿坝县科学技术和农业畜牧水务局(阿坝县)Aba County Science and Technology and Agriculture Animal Husbandry Water Bureau (Aba County) | 32°55′11″ N, 101°40′09″ E | 3261.40 | 5.3 | 663.9 |
| E5 | 松潘县科学技术和农业畜牧局种子站(松潘县)Songpan County Science and Technology and Agricultural Animal Husbandry Bureau Seed Station (Songpan County) | 32°51′40″ N, 103°39′09″ E | 3081.00 | 6.4 | 638.2 |
变异来源 Source of variation | 自由度 Degrees of freedom (df) | 平方和 Sum of square (SS) | 均方 Mean square (MS) | F值 F-value | 占总变异SS比例Proportion of total variation SS (%) |
|---|---|---|---|---|---|
| 环境Environment (E) | 4 | 742.71 | 185.68 | 38.46*** | 46.69 |
| 区组Block | 10 | 48.28 | 4.83 | 2.41* | 3.03 |
| 基因型Genotype (G) | 13 | 160.47 | 12.34 | 6.17*** | 10.09 |
| 交互作用Interaction (G×E) | 52 | 379.48 | 7.30 | 3.65*** | 23.85 |
| IPCA1 | 16 | 200.35 | 12.52 | 6.26*** | 52.80 |
| IPCA2 | 14 | 76.96 | 5.50 | 2.75** | 20.28 |
| IPCA3 | 12 | 58.10 | 4.84 | 2.42** | 15.31 |
| 残差Residual | 10 | 44.08 | 4.41 | ||
| 误差Error | 130 | 259.89 | 2.00 | ||
| 总变异Total variation | 209 | 1590.83 | 7.61 |
Table 2 Hulless barley varieties (lines) yield analysis of variance and AMMI model analysis
变异来源 Source of variation | 自由度 Degrees of freedom (df) | 平方和 Sum of square (SS) | 均方 Mean square (MS) | F值 F-value | 占总变异SS比例Proportion of total variation SS (%) |
|---|---|---|---|---|---|
| 环境Environment (E) | 4 | 742.71 | 185.68 | 38.46*** | 46.69 |
| 区组Block | 10 | 48.28 | 4.83 | 2.41* | 3.03 |
| 基因型Genotype (G) | 13 | 160.47 | 12.34 | 6.17*** | 10.09 |
| 交互作用Interaction (G×E) | 52 | 379.48 | 7.30 | 3.65*** | 23.85 |
| IPCA1 | 16 | 200.35 | 12.52 | 6.26*** | 52.80 |
| IPCA2 | 14 | 76.96 | 5.50 | 2.75** | 20.28 |
| IPCA3 | 12 | 58.10 | 4.84 | 2.42** | 15.31 |
| 残差Residual | 10 | 44.08 | 4.41 | ||
| 误差Error | 130 | 259.89 | 2.00 | ||
| 总变异Total variation | 209 | 1590.83 | 7.61 |
品种 Variety | 平均产量 Average yield (kg·20 m-2) | 主成分值 Principle component values | 稳定性参数 Stability parameter (Dg ) | Dg 排序 Dg rank | 产量排序 Yield rank | ||
|---|---|---|---|---|---|---|---|
| PC1 | PC2 | PC3 | |||||
| G1 | 8.60 | 0.383 | 0.327 | -0.346 | 0.61 | 2 | 11 |
| G2 | 9.66 | 0.701 | 0.044 | 0.435 | 0.83 | 4 | 6 |
| G3 | 10.00 | 0.226 | 0.976 | -0.107 | 1.01 | 7 | 3 |
| G4 | 9.45 | 0.389 | 1.016 | -0.492 | 1.19 | 11 | 9 |
| G5 | 9.96 | 0.182 | 0.036 | 0.848 | 0.87 | 5 | 4 |
| G6 | 9.90 | 1.566 | -0.333 | -0.806 | 1.79 | 14 | 5 |
| G7 | 10.23 | 0.268 | -0.857 | 0.232 | 0.93 | 6 | 1 |
| G8 | 9.61 | -0.078 | -0.350 | 0.222 | 0.42 | 1 | 7 |
| G9 | 10.04 | -0.607 | -0.956 | 0.008 | 1.13 | 10 | 2 |
| G10 | 7.09 | -0.246 | 0.681 | 1.278 | 1.47 | 12 | 14 |
| G11 | 9.57 | 0.564 | -0.587 | 0.028 | 0.82 | 3 | 8 |
| G12 | 8.84 | -1.009 | -0.417 | -0.128 | 1.10 | 9 | 10 |
| G13 | 8.09 | -1.536 | 0.298 | -0.463 | 1.63 | 13 | 13 |
| G14 | 8.48 | -0.803 | 0.122 | -0.708 | 1.08 | 8 | 12 |
Table 3 The yield, principal component values and stability parameters (Dg ) of hulless barley varieties (lines)
品种 Variety | 平均产量 Average yield (kg·20 m-2) | 主成分值 Principle component values | 稳定性参数 Stability parameter (Dg ) | Dg 排序 Dg rank | 产量排序 Yield rank | ||
|---|---|---|---|---|---|---|---|
| PC1 | PC2 | PC3 | |||||
| G1 | 8.60 | 0.383 | 0.327 | -0.346 | 0.61 | 2 | 11 |
| G2 | 9.66 | 0.701 | 0.044 | 0.435 | 0.83 | 4 | 6 |
| G3 | 10.00 | 0.226 | 0.976 | -0.107 | 1.01 | 7 | 3 |
| G4 | 9.45 | 0.389 | 1.016 | -0.492 | 1.19 | 11 | 9 |
| G5 | 9.96 | 0.182 | 0.036 | 0.848 | 0.87 | 5 | 4 |
| G6 | 9.90 | 1.566 | -0.333 | -0.806 | 1.79 | 14 | 5 |
| G7 | 10.23 | 0.268 | -0.857 | 0.232 | 0.93 | 6 | 1 |
| G8 | 9.61 | -0.078 | -0.350 | 0.222 | 0.42 | 1 | 7 |
| G9 | 10.04 | -0.607 | -0.956 | 0.008 | 1.13 | 10 | 2 |
| G10 | 7.09 | -0.246 | 0.681 | 1.278 | 1.47 | 12 | 14 |
| G11 | 9.57 | 0.564 | -0.587 | 0.028 | 0.82 | 3 | 8 |
| G12 | 8.84 | -1.009 | -0.417 | -0.128 | 1.10 | 9 | 10 |
| G13 | 8.09 | -1.536 | 0.298 | -0.463 | 1.63 | 13 | 13 |
| G14 | 8.48 | -0.803 | 0.122 | -0.708 | 1.08 | 8 | 12 |
环境 Environment | 平均产量 Average yield (kg·20 m-2) | 主成分值 Principle component values | 稳定性参数 Stability parameter (De ) | De 排序 De rank | 产量排序 Yield rank | ||
|---|---|---|---|---|---|---|---|
| PC1 | PC2 | PC3 | |||||
| E1 | 6.06 | -1.323 | 0.665 | -0.899 | 1.73 | 2 | 5 |
| E2 | 9.90 | 0.679 | 1.412 | -0.245 | 1.59 | 1 | 3 |
| E3 | 8.31 | -1.744 | -0.911 | 0.661 | 2.08 | 4 | 4 |
| E4 | 11.27 | 1.378 | -1.331 | -0.979 | 2.15 | 5 | 1 |
| E5 | 10.70 | 1.010 | 0.165 | 1.462 | 1.78 | 3 | 2 |
Table 4 The yield, principal component values and stability parameters (De ) of the hulless barley regional test sites
环境 Environment | 平均产量 Average yield (kg·20 m-2) | 主成分值 Principle component values | 稳定性参数 Stability parameter (De ) | De 排序 De rank | 产量排序 Yield rank | ||
|---|---|---|---|---|---|---|---|
| PC1 | PC2 | PC3 | |||||
| E1 | 6.06 | -1.323 | 0.665 | -0.899 | 1.73 | 2 | 5 |
| E2 | 9.90 | 0.679 | 1.412 | -0.245 | 1.59 | 1 | 3 |
| E3 | 8.31 | -1.744 | -0.911 | 0.661 | 2.08 | 4 | 4 |
| E4 | 11.27 | 1.378 | -1.331 | -0.979 | 2.15 | 5 | 1 |
| E5 | 10.70 | 1.010 | 0.165 | 1.462 | 1.78 | 3 | 2 |
| [1] | Xu T W. Classification and identification of varieties of Chinese cultivated barley. Scientia Agricultura Sinica, 1982, 15(6): 39-47. |
| 徐廷文. 中国栽培大麦的分类和变种鉴定. 中国农业科学, 1982, 15(6): 39-47. | |
| [2] | La G, Li M D, Zhang G P, et al. Barley: a potential cereal for producing healthy and functional foods. Food Quality and Safety, 2022(2): 142-154. |
| [3] | Wang Y C, Wang H J, Li B C, et al. GGE-biplot based study on cultivar stability and representativeness of test sites for highland barley. Grassland and Turf, 2018, 38(5): 22-27. |
| 王育才, 王化俊, 李葆春, 等. 基于GGE双标图对青稞区试点代表性及品系稳定性的分析. 草原与草坪, 2018, 38(5): 22-27. | |
| [4] | Lu J, Yu B, Jiang M, et al. Assessment of genetic diversity in 58 highland barley germplasm resources. (2024-08-08)[2024-10-08]. http://kns.cnki.net/kcms/detail/11.1808.S.20240808.0850.008.html. |
| 卢晶, 余波, 江谧, 等. 58份青稞种质资源遗传多样性评价. (2024-08-08)[2024-10-08]. http://kns.cnki.net/kcms/detail/11.1808.S.20240808.0850.008.html. | |
| [5] | Liu M J, Guo J W, Sang A P, et al. Results of regional experiment of highland barley varieties in Gannan Hezuo. Barley and Cereal Sciences, 2015(2): 42-44. |
| 刘梅金, 郭建炜, 桑安平, 等. 青稞品种区域试验甘南合作试点结果. 大麦与谷类科学, 2015(2): 42-44. | |
| [6] | Mou X H. Hulless barley cultivation techniques and promotion strategies of highland barley in Aba Tibetan and Qiang Autonomous Prefecture. The Farmers Consultant, 2021(23): 55-56, 138. |
| 牟学红. 阿坝州青稞高产栽培技术与推广策略. 农家参谋, 2021(23): 55-56, 138. | |
| [7] | Liu T H, Tu Y, Li S Z, et al. Research progress and prospect of highland barley breeding in Sichuan Province. Barley and Cereal Sciences, 2023, 40(4): 1-5, 10. |
| 刘廷辉, 涂洋, 李氏昭, 等. 四川省青稞育种研究进展与展望. 大麦与谷类科学, 2023, 40(4): 1-5, 10. | |
| [8] | Shao Q S, Liang J Z, Yang L, et al. Screening of winter wheat varieties in dry land of mountainous areas of Ningxia based on AMMI model and GGE biplot. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(4): 1-4. |
| 邵千顺, 梁继忠, 杨琳, 等. 基于AMMI模型和GGE双标图的宁夏山区旱地冬小麦品种筛选试验研究. 宁夏农林科技, 2020, 61(4): 1-4. | |
| [9] | Duan J L, Dong B, Chen G R, et al. Analysis of regional soybean test in Gansu based on AMMI model and GGE biplot. (2024-04-20)[2024-10-08]. http://kns.cnki.net/kcms/detail/46.1068.S.20240418.1738.024.html. |
| 段佳霖, 董博, 陈光荣, 等. 基于AMMI模型和GGE双标图对甘肃大豆区域试验的分析. (2024-04-20)[2024-10-08]. http://kns.cnki.net/kcms/detail/46.1068.S.20240418.1738.024.html. | |
| [10] | Huang D M, Xie X Z, Bai G P, et al. Application of AMMI model and GGE biplot in rape regional trial of Hubei. Hubei Agricultural Sciences, 2018, 57(12): 24-29. |
| 黄大明, 谢雄泽, 白桂萍, 等. AMMI模型和GGE双标图在湖北省油菜区域试验中的应用. 湖北农业科学, 2018, 57(12): 24-29. | |
| [11] | Zhang H J, Wang H J, Ma X L, et al. Yield stability of cultivars and representativeness of test sites in barley regional rest of northen China barley cultivars based on GGE-biplot analysis. Journal of Triticeae Crops, 2015, 35(9): 1250-1256. |
| 张海娟, 王化俊, 马小乐, 等. 基于GGE双标图的北方大麦区试品种稳产性及试点代表性评价. 麦类作物学报, 2015, 35(9): 1250-1256. | |
| [12] | Zhang Z F, Fu X F, Liu J Q, et al. Analysis on site discrimination and yield stability of oat varieties. Journal of Triticeae Crops, 2010, 30(3): 515-519. |
| 张志芬, 付晓峰, 刘俊青, 等. 裸燕麦区域试验中地点鉴别力和育成品种稳产性分析. 麦类作物学报, 2010, 30(3): 515-519. | |
| [13] | Gauch H G, Zobel R W. Identifying mega-environments and targeting genotypes. Crop Science, 1997, 37(2): 311-326. |
| [14] | Yan C L, Bai W Q, Guo C, et al. AMMI model analysis on the stability and adaptability of highland barley variety. Agricultural Research in the Arid Areas, 2016, 34(2): 157-162. |
| 颜昌兰, 白文琴, 郭超, 等. 青稞品种稳定性及适应性的AMMI模型分析. 干旱地区农业研究, 2016, 34(2): 157-162. | |
| [15] | Zhang K D, Zhang F Q, Dong B, et al. Application evaluation of AMMI model and GGE biplot based on R language in soybean regional test. Chinese Agricultural Science Bulletin, 2024, 40(13): 140-145. |
| 张恺东, 张凡巧, 董博, 等. 基于R语言的AMMI模型和GGE双标图在大豆区试中的应用评价. 中国农学通报, 2024, 40(13): 140-145. | |
| [16] | Yan W K, Tinker N A. An integrated biplot analysis system for displaying, interpreting, and exploring genotype×environment interaction. Crop Science, 2005, 45(3): 1004-1006. |
| [17] | Yue H W, Wei J W, Liu P C, et al. Stability and adaptability assessment for the selection of elite maize cultivars based on AMMI model and GGE-biplot. Journal of China Agricultural University, 2024, 29(9): 24-37. |
| 岳海旺, 魏建伟, 刘朋程, 等. 基于AMMI模型和GGE双标图对玉米品种产量稳定性和适应性选择评价. 中国农业大学学报, 2024, 29(9): 24-37. | |
| [18] | Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agronomica Sinica, 2010, 36(11): 1805-1819. |
| 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36(11): 1805-1819. | |
| [19] | Zhu Y B, Fan X Q, Ji W T, et al. Comprehensive evaluation of regional trials for the spring maize hybrids in Northwest China based on AMMI model and GGE biplot. Journal of China Agricultural University, 2023, 28(12): 15-24. |
| 朱艳彬, 樊晓琴, 吉闻天, 等. 基于AMMI模型和GGE双标图的西北春玉米品种区域试验综合评价. 中国农业大学学报, 2023, 28(12): 15-24. | |
| [20] | Li W Q, Zhi X G, Zhao J H, et al. Analysis of the maize regional experiment based on the AMMI model and GGE biplot. Journal of Cold-Arid Agricultural Sciences, 2023, 2(7): 607-610. |
| 李伟绮, 支小刚, 赵建华, 等. 基于AMMI模型和GGE双标图的玉米区域试验分析. 寒旱农业科学, 2023, 2(7): 607-610. | |
| [21] | Xie J X, Xiao Z W, Li X, et al. Stability differences of quality traits in high-quality hybrid rice. Journal of Agriculture and Food Research, 2024, 18: 101346. |
| [22] | Mu L H, Chang K Q, Du Y P, et al. Analysis of stable yield adaptability of Fagopyrum tataricum varieties in different climate regions of Ningxia using AMMI model and GGE double label map. Heilongjiang Agricultural Sciences, 2024(2): 8-14. |
| 穆兰海, 常克勤, 杜燕萍, 等. AMMI模型和GGE双标图对宁夏不同气候类型区苦荞品种稳产性适应性分析. 黑龙江农业科学, 2024(2): 8-14. | |
| [23] | Chang S H, Wang J X, Geng Z, et al. Analysis and evaluation of regional test results of soybean based on AMMI and GGE models. (2024-05-09)[2024-10-08]. http://kns.cnki.net/kcms/detail/46.1068.s.20240508.1538.008.html. |
| 常世豪, 王金霞, 耿臻, 等. 基于AMMI和GGE模型对大豆区域试验进行综合评价. (2024-05-09)[2024-10-08]. http://kns.cnki.net/kcms/detail/46.1068.s.20240508.1538.008.html. | |
| [24] | Wang X Y, Cheng J, Gao S, et al. Evaluation of adaptability of naked oat varieties in the alpine region of North China based on the AMMI model and GGE biplot. Acta Prataculturae Sinica, 2022, 31(12): 76-84. |
| 王星宇, 程静, 高生, 等. 应用AMMI模型和GGE双标图评价裸燕麦品种在华北高寒区的适应性. 草业学报, 2022, 31(12): 76-84. | |
| [25] | Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Specifications for the food crop variety trials: NY/T 3923-2021. Beijing: China Agriculture Press, 2021. |
| 中华人民共和国农业农村部. 农作物品种试验规范 粮食作物: NY/T 3923-2021. 北京: 中国农业出版社, 2021. | |
| [26] | Zhang Z, Lu C, Xiang Z H. Analysis of varieties stability based on AMMI model. Acta Agronomica Sinica, 1998, 24(3): 304-309. |
| 张泽, 鲁成, 向仲怀. 基于AMMI模型的品种稳定性分析. 作物学报, 1998, 24(3): 304-309. | |
| [27] | Wan X, Liu Y, Xiao B Z. The adaptability of rice varieties tested in the middle and lower reaches of Yangtze River was analyzed based on AMMI model and GGE biplot. South-Central Agricultural Science and Technology, 2024, 45(1): 7-11, 25. |
| 万星, 刘燚, 肖本泽. 基于AMMI模型和GGE双标图分析长江中下游水稻区试品种的适应性. 中南农业科技, 2024, 45(1): 7-11, 25. | |
| [28] | Guo J W, Xu D L, Wang G P, et al. Stability analysis of hulless barley varieties in multi-year multipoint regional trials in of Gansu based on GGE model. Molecular Plant Breeding, 2024, 22(11): 3677-3684. |
| 郭建炜, 徐冬丽, 王国平, 等. 基于GGE模型对甘肃省青稞多年多点区试品种稳定性分析. 分子植物育种, 2024, 22(11): 3677-3684. |
| [1] | Bin FENG, Xiao-xia YANG, Yu-zhen LIU, Wen-ting LIU, Wei-dong LYU, Yan-fen ZHANG, Quan-min DONG. Effects of different livestock classes on species diversity, niches, and interspecific associations in alpine grassland [J]. Acta Prataculturae Sinica, 2025, 34(8): 1-14. |
| [2] | Si-ran WANG, Cheng-long DING, Ji-peng TIAN, Yun-hui CHENG, Neng-xiang XU, Wen-jie ZHANG, Xin WANG, Bei-yi LIU. Effects of biological and antifungal additives on ensiling characteristics, in vitro digestibility, gas production, and aerobic stability of fermented total mixed ration including wet brewers’ grains [J]. Acta Prataculturae Sinica, 2025, 34(6): 213-226. |
| [3] | Yong-liang ZHANG, Ze TENG, Feng HAO, Tie-feng YU, Yu-xia ZHANG. Effects of different mixed sowing patterns and sowing ratios of alfalfa on grassland productivity and community stability in grass-legume mixtures [J]. Acta Prataculturae Sinica, 2024, 33(2): 185-197. |
| [4] | Wen-qing LING, Lei ZHANG, Jue LI, Qi-xian FENG, Yan LI, Yi ZHOU, Yi-jia LIU, Fu-lin YANG, Jing ZHOU. Effects of Lentilactobacillus buchneri combined with different sugars on nutrient composition, fermentation quality, rumen degradation rate, and aerobic stability of alfalfa silage [J]. Acta Prataculturae Sinica, 2023, 32(7): 122-134. |
| [5] | Ting YE, Xiao-juan WU, Yi-xiao LU, Sheng-juan LIU, Zhuo-hui JIANG, Hui-min YANG. Effect of planting ratio on the stability of forage yield and population density in two alfalfa-grass mixtures [J]. Acta Prataculturae Sinica, 2023, 32(5): 127-137. |
| [6] | Xin GUO, Huan LUO, Xue-mei XU, Ai-xia MA, Zhen-yan SHANG, Tian-hu HAN, De-cao NIU, Hai-yan WEN, Xu-dong LI. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2023, 32(5): 83-93. |
| [7] | Shi-long LEI, Li-rong LIAO, Jie WANG, Lu ZHANG, Zhen-cheng YE, Guo-bin LIU, Chao ZHANG. The diversity-Godron stability relationship of alpine grassland and its environmental drivers [J]. Acta Prataculturae Sinica, 2023, 32(3): 1-12. |
| [8] | Xu-dong WU, Qi JIANG, Zhan-jun WANG, Bo JI, Xiao-bin REN. Effects of precipitation on the stability of aboveground biomass in desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(11): 30-39. |
| [9] | Yong ZHANG, Hai-di WANG, Yu-hong GAO, Bing WU, Bin YAN, Yi-fan WANG, Zheng-jun CUI, Ze-dong WEN. Effect of multivariate flax rotation mode on soil aggregation characteristics and nitrogen content [J]. Acta Prataculturae Sinica, 2023, 32(1): 75-88. |
| [10] | Xiang GUO, Shuo WU, Ming-yang ZHENG, De-kui CHEN, Xuan ZOU, Xiao-yang CHEN, Wei ZHOU, Qing ZHANG. Effects of addition of Neolamarckia cadamba leaves and chitosan oligosaccharides on fermentation quality and aerobic stability of sugarcane top silage [J]. Acta Prataculturae Sinica, 2022, 31(6): 202-210. |
| [11] | Hai-ping LI, Hao GUAN, Zhi-feng JIA, Wen-hui LIU, Xiang MA, Yong LIU, Hui WANG, Li MA, Qing-ping ZHOU. Screening of antifreeze-thawed lactic acid bacteria and their effects on oat silage fermentation quality and aerobic stability [J]. Acta Prataculturae Sinica, 2022, 31(12): 158-170. |
| [12] | Xing-yu WANG, Jing CHENG, Sheng GAO, Mo-han LI, Man-xia YANG, Jun-yong GE, Hai-tao ZHOU, Yun-xia LI, Hua-dong ZANG, Wen-bo ZUO. Evaluation of adaptability of naked oat varieties in the alpine region of North China based on the AMMI model and GGE Biplot [J]. Acta Prataculturae Sinica, 2022, 31(12): 76-84. |
| [13] | Dong-mei YANG, Jun-nian LI, Shuang-lun TAO. Effects of tannic acid addition on the aerobic stability and mycotoxin content of kudzu vine silage [J]. Acta Prataculturae Sinica, 2021, 30(8): 164-170. |
| [14] | Xiang YIN, Yong-qi WANG, Xin-qin LI, Jing TIAN, Xiao-ya WANG, Jian-guo ZHANG. Effects of various moisture-absorbing roughages on the fermentation quality and aerobic stability of napier grass silage [J]. Acta Prataculturae Sinica, 2021, 30(7): 133-138. |
| [15] | Ke-sheng WU, Zong-xian CHE, Xing-guo BAO, Jiu-dong ZHANG, Bing-lin LU, Xin-qiang YANG, Rui-ju YANG. Analysis of soil fertility and crop yield characteristics following long-term straw return to the field in a Hexi Oasis irrigated area [J]. Acta Prataculturae Sinica, 2021, 30(12): 59-70. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||