Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 83-93.DOI: 10.11686/cyxb2022349
Previous Articles Next Articles
Xin GUO1(), Huan LUO2, Xue-mei XU1, Ai-xia MA3, Zhen-yan SHANG1, Tian-hu HAN3, De-cao NIU1, Hai-yan WEN1, Xu-dong LI1()
Received:
2022-08-30
Revised:
2022-10-31
Online:
2023-05-20
Published:
2023-03-20
Contact:
Xu-dong LI
Xin GUO, Huan LUO, Xue-mei XU, Ai-xia MA, Zhen-yan SHANG, Tian-hu HAN, De-cao NIU, Hai-yan WEN, Xu-dong LI. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau[J]. Acta Prataculturae Sinica, 2023, 32(5): 83-93.
凋落物 Litter | 可溶物 Soluble component (%) | 半纤维素 Hemicellulose (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) | 有机碳 Soil organic carbon (%) | 全氮 Total nitrogen (%) | 碳氮比Carbon/nitrogen (C/N) |
---|---|---|---|---|---|---|---|
AS | 25.57±1.64c | 17.76±0.32c | 37.70±1.13a | 17.16±0.37a | 48.99±0.09a | 0.70±0.01c | 70.05±1.12a |
SR | 20.56±1.34d | 25.53±0.98b | 33.51±0.67a | 15.26±0.14b | 40.47±0.22d | 0.71±0.01c | 55.05±1.48b |
SL | 30.99±0.77b | 33.06±0.29a | 29.67±0.74b | 3.28±0.27d | 45.86±0.08b | 1.22±0.01b | 37.37±0.22c |
SAL | 66.40±0.99a | 10.37±0.31d | 17.23±0.78c | 4.44±0.22c | 43.56±0.38c | 3.93±0.01a | 11.08±0.05d |
Table 1 Initial chemical characteristics of the four litters
凋落物 Litter | 可溶物 Soluble component (%) | 半纤维素 Hemicellulose (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) | 有机碳 Soil organic carbon (%) | 全氮 Total nitrogen (%) | 碳氮比Carbon/nitrogen (C/N) |
---|---|---|---|---|---|---|---|
AS | 25.57±1.64c | 17.76±0.32c | 37.70±1.13a | 17.16±0.37a | 48.99±0.09a | 0.70±0.01c | 70.05±1.12a |
SR | 20.56±1.34d | 25.53±0.98b | 33.51±0.67a | 15.26±0.14b | 40.47±0.22d | 0.71±0.01c | 55.05±1.48b |
SL | 30.99±0.77b | 33.06±0.29a | 29.67±0.74b | 3.28±0.27d | 45.86±0.08b | 1.22±0.01b | 37.37±0.22c |
SAL | 66.40±0.99a | 10.37±0.31d | 17.23±0.78c | 4.44±0.22c | 43.56±0.38c | 3.93±0.01a | 11.08±0.05d |
凋落物 Litter | 分解时间 Decomposition time (d) | Olson 拟合方程 Olson fitting equation | 分解系数 Decomposition coefficient (k) | 凋落物 Litter | 分解时间 Decomposition time (d) | Olson 拟合方程 Olson fitting equation | 分解系数 Decomposition coefficient (k) |
---|---|---|---|---|---|---|---|
AS | 60 | y=4.0804e-0.0701t | 0.0701 | SL | 60 | y=4.3742e-0.1003t | 0.1003 |
365 | y=4.0804e-0.0151t | 0.0151 | 365 | y=4.3742e-0.0295t | 0.0295 | ||
730 | y=4.0804e-0.0270t | 0.0270 | 730 | y=4.3742e-0.0442t | 0.0442 | ||
SR | 60 | y=4.9423e-0.0955t | 0.0955 | SAL | 60 | y=4.5816e-0.1104t | 0.1104 |
365 | y=4.9423e-0.0207t | 0.0207 | 365 | y=4.5816e-0.0356t | 0.0356 | ||
730 | y=4.9423e-0.0249t | 0.0249 | 730 | y=4.5816e-0.0697t | 0.0697 |
Table 2 Decomposition coefficient of litters
凋落物 Litter | 分解时间 Decomposition time (d) | Olson 拟合方程 Olson fitting equation | 分解系数 Decomposition coefficient (k) | 凋落物 Litter | 分解时间 Decomposition time (d) | Olson 拟合方程 Olson fitting equation | 分解系数 Decomposition coefficient (k) |
---|---|---|---|---|---|---|---|
AS | 60 | y=4.0804e-0.0701t | 0.0701 | SL | 60 | y=4.3742e-0.1003t | 0.1003 |
365 | y=4.0804e-0.0151t | 0.0151 | 365 | y=4.3742e-0.0295t | 0.0295 | ||
730 | y=4.0804e-0.0270t | 0.0270 | 730 | y=4.3742e-0.0442t | 0.0442 | ||
SR | 60 | y=4.9423e-0.0955t | 0.0955 | SAL | 60 | y=4.5816e-0.1104t | 0.1104 |
365 | y=4.9423e-0.0207t | 0.0207 | 365 | y=4.5816e-0.0356t | 0.0356 | ||
730 | y=4.9423e-0.0249t | 0.0249 | 730 | y=4.5816e-0.0697t | 0.0697 |
指标 Index | 可溶物 Soluble component | 半纤维素 Hemicellulose | 纤维素 Cellulose | 木质素 Lignin | C/N |
---|---|---|---|---|---|
分解系数Decomposition coefficient (k, 730 d) |
Table 3 Correlation coefficients between initial litter quality and litter decomposition rate
指标 Index | 可溶物 Soluble component | 半纤维素 Hemicellulose | 纤维素 Cellulose | 木质素 Lignin | C/N |
---|---|---|---|---|---|
分解系数Decomposition coefficient (k, 730 d) |
凋落物 Litter | 分解时间 Decomposition time (d) | 0.25~2.00 mm | 0.053~0.250 mm | <0.053 mm | |||
---|---|---|---|---|---|---|---|
团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | 团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | 团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | ||
AS | 730 | 13.04±0.32a | 5.59±0.05c | 21.43±0.26a | 5.51±0.11b | 14.73±0.21a | 6.36±0.27b |
SR | 730 | 13.08±0.06a | 6.07±0.15b | 22.10±0.09a | 5.26±0.12c | 14.82±0.13a | 6.42±0.09b |
SL | 730 | 12.64±0.04a | 6.05±0.09b | 21.65±0.68a | 5.03±0.13c | 14.70±0.22a | 6.72±0.02a |
SAL | 730 | 13.43±0.10a | 6.40±0.08a | 21.18±0.19a | 6.12±0.11a | 15.30±0.22a | 7.01±0.14a |
CK | 730 | 13.79±0.13a | 5.27±0.10c | 21.09±0.30a | 5.17±0.02c | 15.12±0.12a | 5.22±0.09c |
Table 4 Weights and SOC contents of soil aggregates with different sizes
凋落物 Litter | 分解时间 Decomposition time (d) | 0.25~2.00 mm | 0.053~0.250 mm | <0.053 mm | |||
---|---|---|---|---|---|---|---|
团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | 团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | 团聚体质量 Mass fraction of aggregation (g) | SOC (g·kg-1) | ||
AS | 730 | 13.04±0.32a | 5.59±0.05c | 21.43±0.26a | 5.51±0.11b | 14.73±0.21a | 6.36±0.27b |
SR | 730 | 13.08±0.06a | 6.07±0.15b | 22.10±0.09a | 5.26±0.12c | 14.82±0.13a | 6.42±0.09b |
SL | 730 | 12.64±0.04a | 6.05±0.09b | 21.65±0.68a | 5.03±0.13c | 14.70±0.22a | 6.72±0.02a |
SAL | 730 | 13.43±0.10a | 6.40±0.08a | 21.18±0.19a | 6.12±0.11a | 15.30±0.22a | 7.01±0.14a |
CK | 730 | 13.79±0.13a | 5.27±0.10c | 21.09±0.30a | 5.17±0.02c | 15.12±0.12a | 5.22±0.09c |
1 | Li S S. Review on effect of drought on soil aggregates stability and its biological regulation mechanism. Grassland and Prataclture, 2020, 32(3): 12-14, 33. |
李耸耸. 干旱对土壤团聚体稳定性的影响及其调控机制. 草原与草业, 2020, 32(3): 12-14, 33. | |
2 | Su Z X, Su B Q, Shangguan Z P, et al. Advances in effects of plant litter decomposition on the stability of soil organic carbon. Research of Soil and Water Conservation, 2022, 29(2): 406-413. |
苏卓侠, 苏冰倩, 上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展. 水土保持研究, 2022, 29(2): 406-413. | |
3 | Li L J, Zeng D H, Yu Z Y, et al. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments, 2011, 75(9): 787-792. |
4 | Soong J L, Parton W J, Calderon F, et al. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 2015, 124(1/2/3): 27-44. |
5 | Haddix M L, Paul E A, Cotrufo M F. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter. Global Change Biology, 2016, 22(6): 2301-2312. |
6 | Song M L, Wang Y Q, Wang H S, et al. Effect of Epichloë endophyte on the litter decomposition of Stipa purpurea in alpine grassland. Acta Prataculturae Sinica, 2021, 30(9): 150-158. |
宋梅玲, 王玉琴, 王宏生, 等. 内生真菌对高寒草地紫花针茅凋落物分解的影响. 草业学报, 2021, 30(9): 150-158. | |
7 | Abiven S, Menasseri-Aubry S, Chenu C. The effects of organic inputs over time on soil aggregate stability-A literature analysis. Soil Biology & Biochemistry, 2009, 41(1): 1-12. |
8 | Prescott C E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 2010, 101(1/2/3): 133-149. |
9 | Wei C F, Shao J A, Ni J P, et al. Soil aggregation and its relationship with organic carbon of purple soils in the Sichuan Basin, China. Agricultural Sciences in China, 2008, 7(8): 987-998. |
10 | Ji B, Shi L, Xu J P, et al. Distribution characteristics of soil aggregates and its organic carbon in typical natural grassland of Ningxia. Acta Ecologica Sinica, 2021, 41(19): 7669-7678. |
季波, 时龙, 徐金鹏, 等. 宁夏典型天然草地土壤团聚体稳定性及其有机碳分布特征. 生态学报, 2021, 41(19): 7669-7678. | |
11 | Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 2000, 32(14): 2099-2103. |
12 | Cotrufo M F, Wallenstein M D, Boot C M, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 2013, 19(4): 988-995. |
13 | Cai W T, Lai L M, Li H Y, et al. Progress of research on shrub encroachment in grassland. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 531-537. |
蔡文涛, 来利明, 李贺祎, 等. 草地灌丛化研究进展. 应用与环境生物学报, 2016, 22(4): 531-537. | |
14 | Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant & Soil, 2002, 241(2): 155-176. |
15 | Li X D, Fu H, Li X D, et al. Effects of land-use regimes on carbon sequestration in the Loess Plateau, northern China. New Zealand Journal of Agricultural Research, 2008, 51(1): 45-52. |
16 | Chung H, Ngo K J, Plante A, et al. Indications for soil carbon saturation in a temperate agroecosystem. Soil Science Society of America Journal, 2009, 74: 130-138. |
17 | Ji S Y, Zhang Q, Jin D S, et al. Effects of planting maize on the stability of soil aggregates and organic carbon distribution in reclaimed soil. Journal of Shanxi Agricultural Sciences, 2020, 48(2): 228-232. |
籍晟煜, 张强, 靳东升, 等.种植玉米对矿区复垦土壤团聚体稳定性及有机碳分布的影响. 山西农业科学, 2020, 48(2): 228-232. | |
18 | Li X D, Fu H, Guo D, et al. Partitioning soil respiration and assessing the carbon balance in a Setaria italica (L.) Beauv. Cropland on the Loess Plateau, Northern China. Soil Biology & Biochemistry, 2010, 42(2): 337-346. |
19 | Singh L, Thakur D, Sharma M K, et al. Dynamics of leaf litter decomposition in the timberline zone of western Himalaya. Acta Oecologica, 2021, 111(2021): 103715. |
20 | Haddix M L, Gregorich E G, Helgason B L, et al. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma, 2020, 363(11): 114160. |
21 | Yue K X, Gong J R, Yu S Y, et al. Effects of litter quality and soil enzyme activity on litter decomposition rate in typical grassland subject to nitrogen addition. Acta Prataculturae Sinica, 2020, 29(6): 71-82. |
岳可欣, 龚吉蕊, 于上媛, 等. 氮添加下典型草原凋落物质量和土壤酶活性对凋落物分解速率的影响. 草业学报, 2020, 29(6): 71-82. | |
22 | Parton W, Silver W L. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 2007, 315(5814): 361-364. |
23 | Mckee G A, Soong J L, Caldéron F, et al. An integrated spectroscopic and wet chemical approach to investigate grass litter decomposition chemistry. Biogeochemistry, 2016, 128(1/2): 107-123. |
24 | Bray S R, Kitajima K, Mack M C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biology & Biochemistry, 2012, 44: 30-37. |
25 | Cotrufo M F, Ranalli M G, Michelle L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12(12): 989-994. |
26 | Potthoff M, Steenwerth K L, Jackson L E, et al. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology & Biochemistry, 2006, 38(7): 1851-1860. |
27 | Swift M J, Heal O W, Anderson J M. Decomposition in terrestrial ecosystems. Studies in Ecology, 1979, 5(14): 2772-2774. |
28 | Jin V L, Haney R L, Fay P A, et al. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality. Soil Biology & Biochemistry, 2013, 58: 172-180. |
29 | Chen H, Ma W M, Zhou Q P, et al. Shrub encroachment effects on the stability of aggregates and the differentiation of Fe and Al oxides in Qinghai-Tibet alpine grassland. Acta Prataculturae Sinica, 2020, 29(9): 73-84. |
陈红, 马文明, 周青平, 等. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究. 草业学报, 2020, 29(9): 73-84. | |
30 | Cotrufo M F, Soong J, Horton A, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8: 776-779. |
31 | Lützow M V, KögeIkgnabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions-a review. European Journal of Soil Science, 2010, 57(4): 426-445. |
32 | Six J, Guggenberger G, Paustian K, et al. Sources and composition of soil organic matter fractions between and within soil aggregates. European Journal of Soil Science, 2001, 52(4): 607-618. |
33 | Castellano M J, Mueller K E, Olk D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global change biology, 2015, 21(9): 3200-3209. |
34 | Elaine M, Clemens S, David W, et al. The influence of above-ground residue input and incorporation on GHG fluxes and stable SOM formation in a sandy soil. Soil Biology & Biochemistry, 2016, 101: 104-113. |
35 | Margit von L, Ingrid K, Klemens E, et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology & Biochemistry, 2007, 39(9): 2183-2207. |
36 | Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility: A laboratory study. Soil Biology and Biochemistry, 2003, 35(3): 391-399. |
[1] | Yuan-yuan JIN, Zhen-jiang CHEN, Tian WANG, Chun-jie LI. Effects of Epichloë endophyte and field management practices on the abundance and diversity of the soil fungal community [J]. Acta Prataculturae Sinica, 2023, 32(4): 142-152. |
[2] | Ao JIANG, Lu-huai JING, Tserang-donko MIPAM, Li-ming TIAN. Progress in research on the effects of grazing on grassland litter decomposition [J]. Acta Prataculturae Sinica, 2023, 32(4): 208-220. |
[3] | Peng-chong DU, Yu-zhen PAN, Shuang-li HOU, Zhi-hui WANG, Hong-yi WANG. Effects of nitrogen and phosphorus addition on litter decomposition in Hulunber steppe [J]. Acta Prataculturae Sinica, 2023, 32(2): 44-53. |
[4] | Jia-yu JIANG, Xue LIAN, Xi-ming TANG, Ren-tao LIU, An-ning ZHANG. The arthropod community structure in Reaumuria soongorica litter at the early stage of its decomposition in arid and semi-arid regions [J]. Acta Prataculturae Sinica, 2022, 31(5): 156-168. |
[5] | Xiao-yu HAN, Ning GUO, Dong-dong LI, Ming-yang XIE, Feng JIAO. Effects of nitrogen addition on soil carbon and nitrogen and biomass change in different grassland types in Inner Mongolia [J]. Acta Prataculturae Sinica, 2022, 31(1): 13-25. |
[6] | Xing WANG, Shuang YU, Dong-mei XU, Ke-chen SONG. Effects of different restorative measures on soil carbon and nitrogen and their component fractions in a degraded desert steppe [J]. Acta Prataculturae Sinica, 2022, 31(1): 26-35. |
[7] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
[8] | Mei-ling SONG, Yu-qin WANG, Hong-sheng WANG, Gen-sheng Bao. Effect of Epichloë endophyte on the litter decomposition of Stipa purpurea in alpine grassland [J]. Acta Prataculturae Sinica, 2021, 30(9): 150-158. |
[9] | Hui-xia LIU, Yi-qiang DONG, Yu-xuan CUI, Xing-hong LIU, Pan-xing HE, Qiang SUN, Zong-jiu SUN. Environmental factors influencing soil organic carbon and its characteristics in desert grassland in Altay, Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(10): 41-52. |
[10] | Bo JI, Jian-long HE, Xu-dong WU, Zhan-jun WANG, Ying-zhong XIE, Qi JIANG. Characteristics of soil organic carbon and active organic carbon in typical natural grassland in Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(1): 24-35. |
[11] | WAN Fang, MENG Zhong-ju, DANG Xiao-hong, WANG Rui-dong, ZHANG Hui-min. C, N and P ecological stoichiometry characteristics of a Stipa species plant-soil system subject to grazing exclusion in a desert steppe [J]. Acta Prataculturae Sinica, 2020, 29(9): 49-55. |
[12] | SUN Shi-xian, DING Yong, LI Xia-zi, WU Xin-hong, YAN Zhi-jian, YIN Qiang, LI Jin-zhuo. Effects of seasonal regulation of grazing intensity on soil erosion in desert steppe grassland [J]. Acta Prataculturae Sinica, 2020, 29(7): 23-29. |
[13] | YUE Ke-xin, GONG Ji-rui, YU Shang-yuan, BAOYIN Taogetao, YANG Bo, WANG Biao, ZHU Chen-chen, ZHANG Zi-he, SHI Jia-yu. Effects of litter quality and soil enzyme activity on litter decomposition rate in typical grassland subject to nitrogen addition [J]. Acta Prataculturae Sinica, 2020, 29(6): 71-82. |
[14] | YANG Yang, TIAN Li-hua, TIAN Hao-qi, SUN Huai-en, ZHAO Jing-xue, ZHOU Qing-ping. Effect of climate warming on decomposition of plant litter in alpine meadow pastures in Northwestern Sichuan [J]. Acta Prataculturae Sinica, 2020, 29(10): 35-46. |
[15] | WANG Xiao-jiao, QI Peng, CAI Li-qun, CHEN Xiao-long, XIE Jun-hong, GAN Hui-jiong, ZHANG Ren-zhi. Effects of alternative fertilization practices on components of the soil organic carbon pool and yield stability in rain-fed maize production on the Loess Plateau [J]. Acta Prataculturae Sinica, 2020, 29(10): 58-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||