草业学报 ›› 2014, Vol. 23 ›› Issue (5): 133-142.DOI: 10.11686/cyxb20140515
田晨霞1,2,3,张咏梅4*,王凯4,张万1
收稿日期:
2013-09-04
出版日期:
2014-10-20
发布日期:
2014-10-20
通讯作者:
Email:zym824@sina.com
作者简介:
田晨霞(1988-),女,甘肃庆阳人,在读硕士。E-mail:tianchenxia@126.com
基金资助:
甘肃农业大学科技创新基金资助
TIAN Chen-xia1,2,3,ZHANG Yong-mei4,WANG Kai4,ZHANG Wan1
Received:
2013-09-04
Online:
2014-10-20
Published:
2014-10-20
摘要:
为研究苜蓿组织结构对NaHCO3胁迫的响应,本实验采用石蜡切片技术和光学显微技术,以甘农3号紫花苜蓿为研究试材,比较研究了0,100和150 mmol/L的NaHCO3胁迫处理对甘农3号紫花苜蓿根、茎和叶内部结构的影响。最显著的结果在于NaHCO3盐碱胁迫对紫花苜蓿植株维管系统影响较大,使贯通于根、茎、叶3个器官的维管组织变小,导致木质部和韧皮部输导能力锐减,极大地限制了由根系吸收的溶解有盐离子的水分向地上部分的运输。此外,在NaHCO3盐碱胁迫下,各营养器官的其他组织也发生了相应的改变。盐碱胁迫使苜蓿叶片整体变薄,对海绵组织的影响强于栅栏组织,造成栅栏组织在叶片中所占比例相对增加;使茎的横切面变为不规则形,表皮细胞变小变薄,胞壁角质层加强,且使位于茎中央的髓薄壁组织细胞直径减小,数量增加,而髓细胞的内含物浓度增加;在盐碱胁迫下促进了根部的发育,根部直径显著变粗,木质导管直径显著变小但数量增多。
中图分类号:
田晨霞,张咏梅,王凯,张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报, 2014, 23(5): 133-142.
TIAN Chen-xia,ZHANG Yong-mei,WANG Kai,ZHANG Wan. The anatomical structure responses in alfalfa to salinity-alkalinity stress of NaHCO3[J]. Acta Prataculturae Sinica, 2014, 23(5): 133-142.
Reference: [1] Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115: 1-22.[2] Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil, 2010, 326(1): 45-60.[3] Peng J Q, Liu Y Q, Yang Y F, et al. Importance and technology progress in containing the soil stalinization and desertification[J]. Tianjin Agricultural Sciences, 2008, 14(4): 26-29. [4] Niu D L, Wang Q J. Research progress on saline-alkali field control[J]. Chinese Journal of Soil Science, 2002, 33(6): 449-455. [5] Yu Z R. Chinese soil salinization and countermeasures research[EB/OL]. htt p:// ccsas. org. cn/zhi l i/t uranggai l i ang/ 200709/89_3. html, 2007, 09-13. [6] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review Plant Physiology Plant Molecular Biology, 2000, 51: 463-499. [7] Yang X Y, Yang J S, Liu G M, et al. Changes in soil fertilities and crop growth after transferring paddy soil to upland soil[J]. Chinese Journal of Soil Science, 2006, (4): 675-679. [8] Zhao K F. Plant salt resistance physiology[M]. Beijing: China Science and Technology Press, 1993: 157-159. [9] Sairamr K, Veerabhadra K R, Srivstava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxid ative stress, antioxidant activity and osmolyte concentration[J]. Plant Science, 2002, 163: 1037-1046. [10] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review Plant Biology, 2008, 59: 651-681. [11] Debez A, Ben Hamed K, Grignon C, et al. Salinity effects on germination, growth, and seed production of the halophyte Cacile maritime[J]. Plant Soil, 2004, 262: 179-189. [12] Flower T J. Genetics of plant mineral nutrition. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55: 307-319. [13] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview[J]. Archives of Biochemistry Biophysics, 2005, 444: 139-158. [14] Sun H G, Li G L, Guan J Y. Research on salt-tolerance capacity of different alfalfa varieties[J]. Jilin Forestry Scicnce and Technology, 2011, 40(2): 1-4. [15] Chen W X. The role of legumes-root nodule bacteria nitrogen fixing system in development of west area of China[J]. Acta Agrestia Sinica, 2004, 12(1): 12. [16] Shi Y C. Extricate ourselves from the dilemma of desertification control and return of reclaimed farmland(to Afforested Area)[J]. Acta Agrestia Sinica, 2004, 12(2): 83-86. [17] Wang W B, Jin R X, Deng X P, et al. Phydiological and biological responses of alfalfa shoots and roots to salt stress[J]. Journal of Northwest A & F University(Natural Science Edition), 2009, 37(5): 217-223. [18] Wang X P, Li W Q. Alfalfa Quality Inspection analysis of several different varieties[J]. Contemporary Animal Husbandry, 2004, (5): 39. [19] Wang J F, Li Y Q. The effect of salinity pasture improved saline-alkali soil[J]. 山Shandong Journal of Animal Husbandry and Veterinary Science, 1995, (5): 20-21. [20] Tian F P, Wang S M, Guo Z G, et al. Relationship between proline content and water content, single plant dry matter, and drought resistance of alfalfa[J]. Pratacultural Science, 2004, 21(1): 3-6. [21] Wan C G, Zou X Y. A study on salt tolerance of Puccinellia chinam poensis and its desalinizing effect on the soil[J]. Pratacultural Science, 1990, 7(3): 3-8. [22] Elsh M A, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants[J]. Journal of Plant Nutrition, 1996, 19(5): 717-728. [23] Sun G R, Yan X F, Xiao W. Preliminary study on physiological mechanism of saline-alkali tolerance of Puccinellia tenuiflora[J]. Journal of Wuhan Botanical Research, 1997, 15(2): 162-166. [24] Sun G R, Guan C, Yan X F. Effect of sodium carbonate stress on amino acid contents of Puccinellia Tenuiflora seedlings. [J]. Bulletin of Botanical Research, 2000, 20(1): 69-72. [25] Gao H M, Wang J B, Sun G R. Further study of physiological mechanism of the saline-alkali tolerance of puccinellia tenuiflora[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(8): 1589-1594. [26] Yan X F, Xiao W, Sun G R, et al. Physiological reaction of seedling of Puccinellia tenuiflora under the condition of salt stress[J]. Heilongjiang Journal of Animal Science and Veterinary Medicine, 1994, 3: 1-3. [27] Zhou C, Zhang Z, Yang Y F. Physiological reaction of seedlings of experimental population of Leymus chinensis under different gradient of salt-alkali stress[J]. Jornal of Northeast Normal University(Natural Science Edition), 2003, 35(4): 62-67. [28] Yang Y F, Liu G C, Zhang B T. An analysis of age structure and the strategy for asexual propagation of Aneurolepidium Chinense population[J]. Acta Botanica Sinica, 1995, 37(2): 147-1531. [29] Shi D C, Yin L J. Strain responses in Na2CO3-stressed Leymus Chinenses seedlings and their mathematical analysis[J]. Journal of Integrative Plant Biology, 1992, 34(5): 386-3931. [30] Shi D C, Sheng Y M, Zhao K F. Atress effects of mixed salts with various salinities on the seedlings of Aneuro-lepidium chinense[J]. Acta Botanica Sinica, 1998, 40(12): 1136-1421. [31] Yin L J, Zhu L. Physiologcal responses and adaptive faculty for Leymus Chinensis seedlings to saline-alkali stress[J]. Journal of Northeast Normal University, 1989, (4): 87-951. [32] Li X Y, Lin J X, Li X J, et al. Growth adaptation and Na+ and K+ metabolism responses of Leymus chinensis seedlings under salt and alkali stresses[J]. Acta Prataculturae Sinica, 2013, 22(1): 201-209. [33] Zhang M, Cai R G, Li H Z, et al. Responses of seedling growth and endogenous hormone contents in different wheat cultivars to salt stress[J]. Acta Ecologica Sinica, 2008, 28(1): 310-320. [34] Mao M Y, Fang Z. Effects of NaHCO3 stress on the growth and some physiological indexes in of oat seedlings[J]. Journal of Anhui Agricultural Sciences, 2009, 37(10): 4468-4470. [35] Wang B, Song F B. Physiological responses and adaptive capacity of oats to saline-alkali stress[J]. Ecology and Enbironment, 2006, 15(3): 625-629. [36] Zhang L, Kang L P. Effect of drought stress on micro-structure of cowpea seedling's leaves and roots[J]. China Vegetables, 2012, (10): 66-74. [37] Liu Y Q, Ma T R, Wang F, et al. Physiological response and adaptive capacity of potato to saline-alkali soil[J]. Chinese Journal of Soil Science, 2011, 42(6): 1388-1392. [38] Li B, Zhao H B, Yang W R, et al. Effect of adaptive capacity of alfalfa seedlings to NaHCO3 stress[J]. Seed, 2010, 29(2): 22-25. [39] Wang X W, Lin C H, Li X F, et al. Effects of NaHCO3 stress on physiological characteristics of Medicago sativa[J]. Pratacultural Science, 2007, 24(2): 26-29. [40] Yang Q C, Sun Y, Su J K, et al. The proceedings of studying on Alfalfa salt tolerant breeding and genitic basis[J]. Grassland of China, 2005, (9): 253-255. [41] Yan S J, Ma H L, Cao Z Z. Study on the salt-tolerance of transgenic plants of alfalfa[J]. Journal of Gansu Agricultural University, 2006, 41(5): 91-94. [42] Serrato Valenti G, Ferro M, Ferraro D, et al. Anatomical changes in Prosopis tamarugo Phil. Seeding growing at different level of NaCl salinity[J]. Annals of Botany (London), 1991, 68: 47-53. [43] Shannon M C, Grieve C M, Francois L E. Whole plant response to salinity[A]. In: Wilkinson R E. Plant Environment Interactions[M]. New York: Marcel Dekker. Inc., 1994: 199-224. [44] Ke Y Q, Pan Y G. Effects of salt stress on the ul trastructure of chloroplast and the activities of some protective enzymes in leaves of sweet potato[J]. Acta Photophysiologica Sinica, 1999, 25(4): 229-233. [45] Aparajita Das-Chatterjee, Lily Goswami, Susmita Maitra, et al. Introgression of a novel salt tolerant Lmyo inositol 1 phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms[J]. FEBS Letters, 2006, 580: 3980-3988. [46] Jiang Y X, Yuan Q H. Effects of salt stress on seedling growth of alfalfa (Medicago sativa)and ion distribution in different alfalfa organs[J]. Acta Prataculturae Sinica, 2011, 20(2): 134-139. [47] Liu J, Cai H, Liu Y, et al. A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2013, 22(2): 250-256. [48] Zhang L Q, Zhang F Y, Hasi A G L. Research progress on alfalfa salt tolerance[J]. Acta Prataculturae Sinica, 2012, 21(6): 296-305. [49] Jiang J, Yang B L, Xia T, Yu S M, et al. Analysis of genetic diversity of salt tolerant alfalfa germplasms[J]. Acta Prataculturae Sinica, 2011, 20(5): 119-125. [50] Li Y, Liu G B, Gao H W, et al. A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2010, 19(4): 79-86. [51] Zhou Y, Wang H, Zhang S Z. Botany (the book)[M]. Beijing: Beijing Normal University Press, 1988: 93. [52] Wang C Y. The discussion on ecolgical amelioration of salt-effected soil under growing rice condition[J]. Chinese Journal of Soil Science, 2002, 33(2): 84-95. [53] Castro-Diez P, Puyravaud J P, Cornelissen J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J]. Oecologia, 2000, 124(4): 476-486. [54] Yin S K. Anatomy of seed plants (Second Edition)[M]. Li Z L, translate. Shanghai: Shanghai Science and Technology Press, 1982: 1-4. [55] Wang Y Z, Wang X L, Li W. Obervation on leaf structure of some species in desert steppe[J]. Journal of Lanzhou University, 1983, 19(3): 87-96. [56] Liu J Q. Xeric structure of different ecological types of desert plants[J]. Acta Phytoecologica et Geobotanica Sinica, 1982, 6(4): 314-319. [57] Sun Q Z, Wang Y Q, Yan Z J, et al. Inner Mongolia desert area several dominant plant adaptation to drought[J]. Forage and Feed, 1991, (3): 12-14. [58] Zheng W J, Xu L Y, Wang X L. Approach to quantitative multifactorial evaluation method of forage value[J]. Acta Prataculturae Sinica, 1993, 2(1): 78-80. [59] Zhao M R, Jia H X. Ultrastructural study of several typical salt plant[J]. Journal of Arid Land Resources & Environment, 1993, 7(3): 334-337. [60] Jia H X, Zhao M R. Several typical salt plant anatomy of the hexi corridor in Gansu Province[J]. Journal of Gansu Agricultural University, 1983, (4): 64-67. [61] Zhu Y S, Zhang Y, Hu Z Z, et al. Studies on the microscopic structure of puccinellia tenuiflora leaves under different salinity stress[J]. Grassland of China, 2001, 32(3): 19-22. [62] Gong M, Ding N C, He Z Y, et al. Correlation between lipid preoxidation damage and ultrastructural changes of mesophyll cels in barley and wheat seedlings during salt stress[J]. Journal of Integrative Plant Biology, 1989, 31(11): 841-846. [63] Li R M. Zhou G Q, Fu S P, et al. Leaf anatomical structure of sesuvium portulacastrum L.under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(2): 0287-0292. [64] Zhu Y S, Zhang Y, Hu Z Z, et al. Studies on the microscopic structure of puccinellia tenuiflora stem under salinity stress.[J]. Grassland of China, 2000, (5): 6-9. 参考文献:[1] Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115: 1-22.[2] Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil, 2010, 326(1): 45-60.[3] 彭津琴, 刘永强, 杨玉芳, 等. 遏制土壤盐碱化、荒漠化的必要性及技术进展[J]. 天津农业科学, 2008, 14(4): 26-29. [4] 牛东玲, 王启基. 盐碱地治理研究进展[J]. 土壤通报, 2002, 33(6): 449-455. [5] 宇振荣. 中国土地盐碱化及其防治对策研究[EB/OL]. htt p:// ccsas. org. cn/zhi l i/t uranggai l i ang/ 200709/89_3. html, 2007-09-13. [6] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review Plant Physiology Plant Molecular Biology, 2000, 51: 463-499. [7] 杨晓英, 杨劲松, 刘广明, 等. 盐碱地稻田旱作后土壤肥力变化及其对作物生长的影响[J]. 土壤通报, 2006, (4): 675-679. [8] 赵可夫. 植物抗盐生理[M]. 北京: 中国科学技术出版社, 1993: 157-159. [9] Sairamr K, Veerabhadra K R, Srivstava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxid-ative stress, antioxidant activity and osmolyte concentration[J]. Plant Science, 2002, 163: 1037-1046. [10] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review Plant Biology, 2008, 59: 651-681. [11] Debez A, Ben Hamed K, Grignon C, et al. Salinity effects on germination, growth, and seed production of the halophyte Cacile maritime[J]. Plant Soil, 2004, 262: 179-189. [12] Flower T J. Genetics of plant mineral nutrition. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55: 307-319. [13] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview[J]. Archives of Biochemistry Biophysics, 2005, 444: 139-158. [14] 孙宏刚, 李桂玲, 官甲义. 不同苜蓿品种耐盐能力的研究[J]. 吉林林业科技, 2011, 40(2): 1-4. [15] 陈文新. 豆科植物根瘤菌固氮体系在西部大开发中的作用[J]. 草地学报, 2004, 12(1): 12. [16] 石元春. 走出治沙与退耕中的误区[J]. 草地学报, 2004, 12(2): 83-86. [17] 王文斌, 金润熙, 邓西平, 等. 苜蓿幼苗芽、根器官对盐胁迫的生理生化响应[J]. 西北农林科技大学学报, 2009, 37(5): 217-223. [18] 王学鹏, 李文全. 几种不同品种紫花苜蓿质量检验分析报告[J]. 当代畜牧, 2004, (5): 39. [19] 王金芬, 李玉芹. 耐盐碱牧草改良盐碱土的效果[J]. 山东畜牧兽医, 1995, (5): 20-21. [20] 田福平, 王锁民, 郭正刚, 等. 紫花苜蓿脯氨酸含量和含水量、单株干质量与抗旱性的相关性研究[J]. 草业科学, 2004, 21(1): 3-6. [21] 万长贵, 邹秀莹. 碱茅草耐盐和脱盐机理初探[J]. 草业科学, 1990, 7(3): 3-8. [22] Elsh M A, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants[J]. Journal of Plant Nutrition, 1996, 19(5): 717-728. [23] 孙国荣, 阎秀峰, 肖玮. 星星草耐盐碱生理机制的初步研究[J]. 武汉植物学研究, 1997, 15(2): 162-166. [24] 孙国荣, 关畅, 阎秀峰. Na2CO3 胁迫对星星草幼苗游离氨基酸含量的影响[J]. 植物研究, 2000, 20(1): 69-72. [25] 高红明, 王建波, 孙国荣. 星星草耐盐碱生理机制再探讨[J]. 西北植物学报, 2005, 25(8): 1589-1594. [26] 阎秀峰, 肖玮, 孙国荣, 等. 盐胁迫下星星草幼苗的生理反应-I. 盐胁迫对星星草幼苗生长的影响[J]. 黑龙江畜牧兽医, 1994, 3: 1-3. [27] 周婵, 张卓, 杨允菲. 实验羊草种群幼苗对不同梯度盐碱胁迫的生理响应[J]. 东北师大学报自然科学版, 2003, 35(4): 62-67. [28] 杨允菲, 刘庚长, 张宝田. 羊草种群年龄结构及无性繁殖对策的分析[J]. 植物学报, 1995, 37(2): 147-1531. [29] 石德成, 殷立娟. Na2CO3胁迫下羊草苗的胁变反应及其数学分析[J]. 植物学报, 1992, 34(5): 386-3931. [30] 石德成, 盛艳敏, 赵可夫. 不同盐浓度的混合盐对羊草苗是胁迫反应[J]. 植物学报, 1998, 40(12): 1136-1421. [31] 殷立娟, 祝玲. 羊草苗对盐碱胁迫的反应和适应性[J]. 东北师大学报(自然科学版), 1989, (4): 87-951. [32] 李晓宇, 蔺吉祥, 李秀军, 等. 羊草苗期对盐碱胁迫的生长适应及Na+、K+代谢响应[J]. 草业学报, 2013, 22(1): 201-209. [33] 张敏, 蔡瑞国, 李慧芝, 等. 盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J]. 生态学报, 2008, 28(1): 310-320. [34] 毛明艳, 方正. NaHCO3 胁迫对燕麦幼苗生长及相关生理指标的影响[J]. 安徽农业科学, 2009, 37(10): 4468-4470. [35] 王波, 宋凤斌. 燕麦对盐碱胁迫的反应和适应性[J]. 生态环境, 2006, 15(3): 625-629. [36] 张禄, 康利平. 干旱胁迫对豇豆幼苗叶片及根显微结构的影响[J]. 中国蔬菜, 2012, (10): 66-74. [37] 柳永强, 马廷蕊, 王方, 等. 马铃薯对盐碱土壤的反应和适应性研究[J]. 土壤通报, 2011, 42(6): 1388-1392. [38] 李波, 赵洪波, 杨蔚然, 等. NaHCO3 胁迫对苜蓿苗期适应性的影响[J]. 种子, 2010, 29(2): 22-25. [39] 王学文, 蔺彩虹, 李小峰, 等. NaHCO3 胁迫对大叶紫花苜蓿生理特征的影响[J]. 草业科学, 2007, 24(2): 26-29. [40] 杨青川, 孙彦, 苏加楷, 等. 紫花苜蓿耐盐育种及耐盐遗传基础的研究进展[J]. 草地学报, 2005, (9): 253-255. [41] 晏石娟, 马晖玲, 曹致中. 紫花苜蓿抗旱耐盐碱转基因抗性苗耐盐性研究[J]. 甘肃农业大学学报, 2006, 41(5): 91-94. [42] Serrato Valenti G, Ferro M, Ferraro D, et al. Anatomical changes in Prosopis tamarugo Phil. Seeding growing at different level of NaCl salinity[J]. Annals of Botany (London), 1991, 68: 47-53. [43] Shannon M C, Grieve C M, Francois L E. Whole plant response to salinity[A]. In: Wilkinson R E. Plant Environment Interactions[M]. New York: Marcel Dekker. Inc., 1994: 199-224. [44] 柯玉琴, 潘延国. NaCl胁迫下对甘薯叶片叶绿素超微结构及一些酶活性的影响[J]. 植物生理学报, 1999, 25(4): 229-233. [45] Aparajita Das-Chatterjee, Lily Goswami, Susmita Maitra, et al. Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms[J]. FEBS Letters, 2006, 580: 3980-3988. [46] 景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J]. 草业学报, 2011, 20(2): 134-139. [47] 刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较[J]. 草业学报, 2013, 22(2): 250-256. [48] 张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展[J]. 草业学报, 2012, 21(6): 296-305. [49] 姜健, 杨宝灵, 夏彤, 于淑梅, 等. 紫花苜蓿耐盐种质资源的遗传多样性分析[J]. 草业学报, 2011, 20(5): 119-125. [50] 李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应[J]. 草业学报, 2010, 19(4): 79-86. [51] 周仪, 王慧, 张述祖. 植物学(上册)[M]. 北京: 北京师范大学出版社, 1988: 93. [52] 王春裕. 论盐渍土种稻生态改良[J]. 土壤通报, 2002, 33(2): 84-95. [53] Castro-Diez P, Puyravaud J P, Cornelissen J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J]. Oecologia, 2000, 124(4): 476-486. [54] 伊稍K. 种子植物解剖学(第二版)[M]. 李正理, 译. 上海: 上海科学技术出版社, 1982: 1-4. [55] 王耀芝, 王勋陵, 李尉. 荒漠化草原常见植物叶内部结构的观察[J]. 兰州大学学报, 1983, 19(3): 87-96. [56] 刘家琼. 我国荒漠不同生态类型植物的旱生结构[J]. 植物生态学与地形学期刊, 1982, 6(4): 314-319. [57] 孙启忠, 王育青, 阎志坚, 等. 内蒙古荒漠区几种优势植物对干旱的适应性[J]. 牧草与饲料, 1991, (3): 12-14. [58] 郑文菊, 徐兰义, 王勋陵. 盐分对植物结构的影响[J]. 草业学报, 1993, 2(1): 78-80. [59] 赵蔓蓉, 贾恢先. 几种典型盐地植物超微结构的研究[J]. 干旱区资源与环境, 1993, 7(3): 334-337. [60] 贾恢先, 赵蔓蓉. 甘肃河西走廊几种典型盐地植物的解剖学研究[J]. 甘肃农业大学学报, 1983, (4): 64-67. [61] 朱宇旌, 张勇, 胡自治, 等. 小花碱茅叶适应盐胁迫的显微结构研究[J]. 中国草地, 2001, 32(3): 19-22. [62] 龚明, 丁念诚, 贺子义, 等. 盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J]. 植物学报, 1989, 31(11): 841-846. [63] 李瑞梅, 周广奇, 符少萍, 等. 盐胁迫下海马齿叶片结构变化[J]. 西北植物学报, 2010, 30(2): 0287-0292. [64] 朱宇旌, 张勇, 胡自治, 等. 小花碱茅茎适应盐胁迫的显微结构研究[J]. 中国草地, 2000, (5): 6-9. |
[1] | 张前兵,艾尼娃尔·艾合买提,于磊,鲁为华,常青. 绿洲区不同灌溉方式及灌溉量对苜蓿田土壤盐分运移的影响[J]. 草业学报, 2014, 23(6): 69-77. |
[2] | 王绍飞,罗永聪,张新全,黄琳凯,马啸,刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价[J]. 草业学报, 2014, 23(6): 87-94. |
[3] | 王勇,原现军,郭刚,闻爱友,王坚,肖慎华,余成群,巴桑,邵涛. 西藏不同饲草全混合日粮发酵品质和有氧稳定性的研究[J]. 草业学报, 2014, 23(6): 95-102. |
[4] | 王鸿泽,王之盛,康坤,邹华围,申俊华,胡瑞. 玉米粉和乳酸菌对甘薯蔓、酒糟及稻草混合青贮品质的影响[J]. 草业学报, 2014, 23(6): 103-110. |
[5] | 覃方锉,赵桂琴,焦婷,韩永杰,侯建杰,宋旭东. 含水量及添加剂对燕麦捆裹青贮品质的影响[J]. 草业学报, 2014, 23(6): 119-125. |
[6] | 邱小燕,原现军,郭刚,闻爱友,余成群,巴桑,邵涛. 添加糖蜜和乙酸对西藏发酵全混合日粮青贮发酵品质及有氧稳定性影响[J]. 草业学报, 2014, 23(6): 111-118. |
[7] | 史传奇,刘玫,王臣,张欣欣,程薪宇. 东北野豌豆族植物叶形态结构的研究及其分类学意义[J]. 草业学报, 2014, 23(6): 157-166. |
[8] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
[9] | 刘会杰,李胜,马绍英,张品南,时振振,杨晓明. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6): 189-197. |
[10] | 张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241. |
[11] | 康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312. |
[12] | 李君临,张新全,玉柱,郭旭生,孟祥坤,罗燕,闫艳红. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响[J]. 草业学报, 2014, 23(6): 342-348. |
[13] | 漆婧华,张峰,王莺,孙国钧. 黄土高原半干旱区覆膜玉米农田氮变化动态研究[J]. 草业学报, 2014, 23(5): 13-23. |
[14] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
[15] | 潘明洪,凌瑶,景文,马洪平,彭燕. 四川白三叶根瘤菌遗传多样性及系统发育研究[J]. 草业学报, 2014, 23(5): 143-152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||