[1] Lambers H, Plaxton W C. Phosphorus: back to the roots//Plaxton W C, Lambers H. Annual plant reviews, 2015, Volume 48, phosphorus metabolism in plants. Hoboken, N J: John Wiley & Sons, Inc: 3-22. [2] Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157(3): 423-447. [3] Shen J, Yuan L, Zhang J, et al . Phosphorus dynamics: from soil to plant. Plant Physiology, 2011, 156(3): 997-1005. [4] Han R R, Wen Y F, Shi L T. Advances in grass phosphorus nutrition and tolerance to low phosphorus. Pratacultural Science, 2014, 31(8): 1549-1555. 韩蓉蓉, 文亦芾, 史亮涛. 牧草磷素营养及其耐低磷特性. 草业科学, 2014, 31(8): 1549-1555. [5] Kochian L V, Pineros M A, Liu J, et al . Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annual Review of Plant Biology, 2015, 66: 571-598. [6] Peret B, Desnos T, Jost R, et al . Root architecture responses: in search of phosphate. Plant Physiology, 2014, 166(4): 1713-1723. [7] Gutjahr C, Paszkowski U. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 2013, 4(204): 204. [8] López-Arredondo D L, Leyva-González M A, González-Morales S I, et al . Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 2014, 65(1): 95-123. [9] Zhang F, Sun Y, Pei W, et al . Involvement of OsPHT1; 4 in phosphate acquisition and mobilization facilitates embryo development in rice. The Plant Journal, 2015, 82(4): 556-569. [10] Duff S M, Sarath G, Plaxton W C. The role of acid phosphatases in plant phosphorus metabolism. Physiologia Plantarum, 1994, 90(4): 791-800. [11] Tran H T, Hurley B A, Plaxton W C. Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Science, 2010, 179(1/2): 14-27. [12] Tian J, Liao H. The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling//Plaxton W C, Lambers H. Annual plant reviews, 2015, volume 48, phosphorus metabolism in plants. Hoboken, N J: John Wiley & Sons, Inc: 265-287. [13] Xu J, Zhang X Z, Li T X, et al . Phosphorus absorption and acid phosphatase activity in wild barley genotypes with different phosphorus use efficiencies. Acta Prataculturae Sinica, 2015, 24(1): 88-98. 徐静, 张锡洲, 李廷轩, 等. 野生大麦对土壤磷吸收及其酸性磷酸酶活性的基因型差异. 草业学报, 2015, 24(1): 88-98. [14] Bai C J, Liu G D, Chen Z Q, et al . The selecting and breeding of Stylosanthes guianensis cv. Reyan No.20 induced by space flight. Chinese Journal of Tropical Crops, 2011, 32(1): 33-41. 白昌军, 刘国道, 陈志权, 等. 热研20号太空柱花草选育研究报告. 热带作物学报, 2011, 32(1): 33-41. [15] Cui H, Li L Y, Xie X L, et al . Differences in root architecture of several Stylosanthes genotypes and their phosphorus efficiency. Acta Prataculturae Sinica, 2013, 22(5): 265-271. 崔航, 李立颖, 谢小林, 等. 不同基因型柱花草的根系构型差异及其磷效率. 草业学报, 2013, 22(5): 265-271. [16] Du Y, Tian J, Liao H, et al . Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils. Annals of Botany, 2009, 103(8): 1239-1247. [17] Liu P, Xue Y, Chen Z, et al . Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes . Journal of Experimental Botany, 2016, 67(14): 4141-4154. [18] Bai C J, Liu G D, Yan L L. Comparison trials of Stylosanthes induced by space flight. Chinese Journal of Tropical Crops, 2009, 30(7): 953-960. 白昌军, 刘国道, 严琳玲. 空间诱变柱花草品系比较试验. 热带作物学报, 2009, 30(7): 953-960. [19] Liu P D, Sun L L, Chen Z J, et al . Dynamic effects of low phosphorus stress on acid phosphatase activity and isoforms in Stylosanthes . Chinese Journal of Tropical Crops, 2013, 34(7): 1340-1346. 刘攀道, 孙丽莉, 陈志坚, 等. 低磷胁迫对柱花草酸性磷酸酶活性及其组成的动态影响. 热带作物学报, 2013, 34(7): 1340-1346. [20] Du Y M, Bai C J, Tian J, et al . Genotypic variations of Stylosanthes in adaptation to low-P acid soils and the possible physiological mechanisms. Journal of South China Agricultural University, 2008, 29(4): 6-11. 杜育梅, 白昌军, 田江, 等. 柱花草适应酸性缺磷土壤的基因型差异及可能的生理机制. 华南农业大学学报, 2008, 29(4): 6-11. [21] Murphy J, Riley J P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 1962, 27: 31-36. [22] Lynch J P. The role of nutrient-efficient crops in modern agriculture. Journal of Crop Production, 1998, 1(2): 241-264. [23] Zhu C Q, Zhu X F, Hu A Y, et al . Differential effects of nitrogen forms on cell wall phosphorus remobilization are mediated by nitric oxide, pectin content, and phosphate transporter expression. Plant Physiology, 2016, 171(2): 1407-1417. [24] Ohno T, Zibilske L M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Science Society of America Journal, 1991, 55(3): 892-895. [25] Robinson W D, Park J, Tran H T, et al . The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana . Journal of Experimental Botany, 2012, 63(18): 6531-6542. [26] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254. [27] Liang C Y, Liao H. Molecular mechanisms underlying the responses of plant roots to low P stress. Chinese Bulletin of Life Sciences, 2015, 27(3): 389-397. 梁翠月, 廖红. 植物根系响应低磷胁迫的机理研究. 生命科学, 2015, 27(3): 389-397. [28] Ding G D, Chen S S, Shi L, et al . Advances in genetic regulation mechanism of plant tolerance to phosphorus deficiency. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 733-744. 丁广大, 陈水森, 石磊, 等. 植物耐低磷胁迫的遗传调控机理研究进展. 植物营养与肥料学报, 2013, 19(3): 733-744. [29] Cheng X B. Review on crop space breeding and industrialization promotion. Subtropical Plant Science, 2014, 43(3): 266-270. 程小兵. 农作物太空育种现状及推广前景展望. 亚热带植物科学, 2014, 43(3): 266-270. [30] Shane M W, Stigter K, Fedosejevs E T, et al . Senescence-inducible cell-wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae). Journal of Experimental Botany, 2014, 65(20): 6097-6106. [31] Wang L, Lu S, Zhang Y, et al . Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. Journal of Integrative Plant Biology, 2014, 56(3): 299-314. |