[1] Sarah E, Hobbie. Plant species effects on nutrient cycling: Revisiting litter feedbacks. Trends in Ecology & Evolution, 2015, 30(6): 357-363. [2] Fornara D A, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 2008, 96(2): 314-322. [3] Wang X, Yan P F, Zhan P F, et al. The relative contributions of plant quality, simulated rising temperature, and habitat to litter decomposition. Chinese Journal of Applied Ecology, 2018, 29(2): 474-482. 王行, 闫鹏飞, 展鹏飞, 等. 植物质量、模拟增温及生境对凋落物分解的相对贡献. 应用生态学报, 2018, 29(2): 474-482. [4] Parton W, Silver W L, Burke I C. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 2007, 315: 361-364. [5] Bothwell L D, Selmants P C, Giardina C P. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests. The Journal of Life and Environmental Sciences, 2014, 2(13): 685. [6] Marty C, Houle D, Gagnon C. Variation in stocks and distribution of organic C in soils across 21 eastern Canadian temperate and boreal forests. Forest Ecology and Management, 2015, 345: 29-38. [7] Cornelissen J, Bodegom P, Aerts R. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 2007, 10(7): 619-627. [8] Song P, Zhang N L, Ma K P. Impacts of global warming on litter decomposition. Acta Ecologica Sinica, 2014, 34(6): 1327-1339. [9] Shen Y P, Wang G Y. Key findings and assessment results of IPCC WGI Fifth Assessment Report. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076. 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点. 冰川冻土, 2013, 35(5): 1068-1076. [10] IPCC (2013) Climate Change 2013: The physical science basis, the summary for policymakers of the working group I contribution to the fifth assessment report. New York: Cambridge University Press, 2013. [11] Peng S L, Liu Q. The dynamics of forest litter and its responses to global warming. Acta Ecologica Sinica, 2002, 22(9): 1534-1544. [12] Lin X W, Zhang Z H, Wang S P. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 2011, 151(7): 792-802. [13] Song Y, Zhang X R, Yan H Z. Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical area. Environmental Science, 2014, 35(3): 1151-1158. [14] Salinas N, Malhi Y, Meir P. The sensitivity of tropical leaf litter decomposition to temperature: Results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist, 2011, 189(4): 967-977. [15] Cheng X L, Luo Y Q, Su B. Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie. Agriculture, Ecosystems & Environment, 2010, 138(3/4): 206-213. [16] Clarkson B R, Moore T R, Fitzgerald N B. Water table regime regulates litter decomposition in restiad peatlands, New Zealand. Ecosystem, 2014, 17(2): 317-326. [17] Xu Z F, Zhu J X, Wu R Z. Effects of litter quality and climate change along an elevational gradient on litter decomposition of subalpine forests, Eastern Tibetan Plateau, China. Journal of Forestry Research, 2016, 27(3): 505-511. [18] Luo C, Guang P X, Chao Z. Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau. Global Change Biology, 2010, 16(5): 1606-1617. [19] Sun T, Dong L L, Zheng W. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biology & Biochemistry, 2016, 93: 50-59. [20] Berg B, Ekbohm G. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Canadian Journal of Botany, 1991, 69(7): 1449-1456. [21] Liu Q, Peng S L, Bi H. Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests. Frontiers of Forestry in China, 2005, 27(1): 24-32. [22] Xu H M, Xue X. A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2013, 33(7): 2071-2083. 徐满厚, 薛娴. 青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应. 生态学报, 2013, 33(7): 2071-2083. [23] Walther G R, Post E, Convey P. Ecological responses to recent climate change. Nature, 2002, 416(6879): 389-395. [24] Zhao X Q, Cao G M, Li Y N, et al.Alpine meadow ecosystem and global change. Beijing: Science Press, 2009. 赵新全, 曹广民, 李英年, 等. 高寒草甸生态系统与全球变化. 北京: 科学出版社, 2009. [25] Ze R D K, Wen Y L, Ai Y, et al. Impact of different grazing intensity on soil physical properties and plant biomass in Qinghai-Tibet Plateau alpine meadow ecosystem. Pratacultural Science, 2016, 33(10): 1975-1980. 泽让东科, 文勇立, 艾鷖, 等. 放牧对青藏高原高寒草地土壤和生物量的影响. 草业科学, 2016, 33(10): 1975-1980. [26] Yang Y F, Zi H B, Liu M, et al. Responses of soil microbial community functional diversity to Camponotus herculeanus ant-hill disturbance in alpine meadows. Acta Prataculturae Sinica, 2017, 26(1): 43-53. 杨有芳, 字洪标, 刘敏, 等. 高寒草甸土壤微生物群落功能多样性对广布弓背蚁蚁丘扰动的响应. 草业学报, 2017, 26(1): 43-53. [27] Zhao Y Y. Study on the physiological and ecological response of typical plants in alpine meadow to temperature increase and simulated grazing. Beijing: University of Chinese Academy of Sciences, 2016. 赵艳艳. 高寒草甸典型植物对增温和模拟放牧的生理生态响应的研究. 北京: 中国科学院大学, 2016. [28] Ren F, Yang X X, Zhou H K, et al. Physiological-biochemical responses of three plant species to experimental warming using OTC in alpine meadow on Qinghai-Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(11): 2257-2264. 任飞, 杨晓霞, 周华坤, 等. 青藏高原高寒草甸3种植物对模拟增温的生理生化响应. 西北植物学报, 2013, 33(11): 2257-2264. [29] Zhang J E. Commonly used experimental research methods and techniques of ecology. Beijing: Chemical Industry Press, 2007. 章家恩. 生态学常用实验研究方法与技术. 北京: 化学工业出版社, 2007. [30] Olson J S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44: 322-331. [31] Chen C N. Spatial-temporal change of surface albedo and its driving force in grassland growing season on Qinghai-Tibet Plateau. Kaifeng: Henan University, 2019. 陈超男. 青藏高原草地生长季地表反照率时空变化及其驱动力分析. 开封: 河南大学, 2019. [32] Wang X Y, Zhao X Y, Li Y L, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review. Chinese Journal of Applied Ecology, 2013, 24(11): 3300-3310. 王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展. 应用生态学报, 2013, 24(11): 3300-3310. |