[1] Scheiner S M.Genetics and evolution of phenotypic plasticity. Annual Review of Ecology & Systematics, 1993, 24(1): 35-68. [2] Frankham R.Challenges and opportunities of genetic approaches to biological conservation. Biological Conservation, 2010, 143(9): 1919-1927. [3] Hao L J, Lin S Z, Xie L, et al. Analysis of genetic diversity of Pisticia chinensis (Anacardiaceae) by microsatellite markers. Genomics and Applied Biology, 2011, 30(10): 1055-1064. 郝丽娟, 林善枝, 谢磊, 等. 黄连木遗传多样性的SSR分析. 基因组学与应用生物学, 2011, 30(10): 1055-1064. [4] Parmesan C.Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution & Systematics, 2006, 37(1): 637-669. [5] Klimeš L, DolezžAl J. An experimental assessment of the upper elevational limit of flowering plants in the western Himalayas. Ecography, 2010, 33(3): 590-596. [6] Xu Y L, Cai N H, Chen S, et al. Relationships between the genetic diversity of Pinus yunnanensis Franch. natural populations and ecological factors. Chinese Journal of Ecology, 2016, 35(7): 1767-1775. 许玉兰, 蔡年辉, 陈诗, 等. 云南松天然群体遗传变异与生态因子的相关性. 生态学杂志, 2016, 35(7): 1767-1775. [7] Shah J M, Asgher Z, Zeng J B, et al. Growth and physiological characterization of low nitrogen responses in Tibetan wild barley (Hordeum spontaneum) and cultivated barley (Hordeum vulgare). Journal of Plant Nutrition, 2017, 40(6): 861-868. [8] Ma D W, Wang S H, Luo T, et al. Effects of environmental factors on the genetic diversity of Pogonatherum paniceum. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(2): 73-77. 马丹炜, 王胜华, 罗通, 等. 环境因子对岩生植物金发草遗传多样性的影响. 中山大学学报: 自然科学版, 2006, 45(2): 73-77. [9] Xu B, Sun G L, Wang X M, et al. Population genetic structure is shaped by historical, geographic, and environmental factors in the Leguminous shrub Caragana microphylla, on the Inner Mongolia Plateau of China. BMC Plant Biology, 2017, 17(200):1-12. [10] Mjf B, Jaf D F, Freitas L B.Ecological drivers of plant genetic diversity at the southern edge of geographical distributions: Forestal vines in a temperate region. Genetics & Molecular Biology, 2018, 41(Supple 1): 318-326. [11] Wang Q, Wang B.The application of DNA molecular markers in fruit tree genetics. Hereditas, 2000, 22(5): 339-344. 王倩, 王斌. DNA分子标记在果树遗传学研究上的应用. 遗传, 2000, 22(5): 339-344. [12] Alvarez I, Wendel J F.Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics & Evolution, 2003, 29(3): 417-434. [13] Poczai P, Hyvönen J.Nuclear ribosomal spacer regions in plant phylogenetics: Problems and prospects. Molecular Biology Reports, 2010, 37(4): 1897-1912. [14] Wang Y S, Huang H W, Wang Y.Recent progress in plant molecular population genetics. Hereditas, 2007, 29(10): 1191-1198. 王云生, 黄宏文, 王瑛. 植物分子群体遗传学研究动态. 遗传, 2007, 29(10): 1191-1198. [15] Zhang D Y, Pan B R, Yin L K.The photogeographical studies of Tamarix (Tamaricaceae). Acta Botanbica Yunnanica, 2003, 25(4): 415-427. 张道远, 潘伯荣, 尹林克. 柽柳科柽柳属的植物地理研究. 云南植物研究, 2003, 25(4): 415-427. [16] Zhang D Y, Yi L K, Pan B R.A review on the study of salt glands of Tamarix. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1): 190-194. 张道远, 尹林克, 潘伯荣. 柽柳泌盐腺结构、功能及分泌机制研究进展. 西北植物学报, 2003, 23(1): 190-194. [17] Zhang J, Yi L K, Zhang D Y.RAPD analysis of on genetic diversity of natural populations of Tamarix hispida. Acta Botanbica Yunnanica, 2003, 25(5): 557-562. 张娟, 尹林克, 张道远. 刚毛柽柳天然居群遗传多样性初探. 云南植物研究, 2003, 25(5): 557-562. [18] Zhao J K.Study on genetic structure of Tamarix chinensis in natural populations in Yellow River Delta. Nanjing: Nanjing Forestry University, 2006. 赵景奎. 黄河三角洲柽柳群体遗传多样性的研究. 南京: 南京林业大学, 2006. [19] Li R.Study on develop of EST-SSR primer and genetic structure of Tamarix chinensis. Nanjing: Nanjing Forestry University, 2007. 李锐. 柽柳 SSR 标记开发及群体遗传结构分析. 南京: 南京林业大学, 2007. [20] Jiang Z, Chen Y, Bao Y.Population genetic structure of Tamarix chinensis, in the Yellow River Delta, China. Plant Systematics & Evolution, 2012, 298(1): 147-153. [21] Gaskin J F, Wilson L M.Phylogenetic relationships among native and naturalized Hieracium (Asteraceae) in Canada and the United States based on plastid DNA sequences. Systematic Botany, 2007, 32(2): 478-485. [22] Taberlet P L, Gielly L, Pautou G, et al. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 1991, 17(5): 1105-1109. [23] Gaskin J F, Schaal B A.Molecular phylogenetic investigation of US invasive Tamarix. Systematic Botany, 2003, 28(1): 86-95. [24] Zhang M L, Meng H H, Zhang H X, et al. Himalayan origin and evolution of Myricaria (Tamaricaeae) in the Neogene. PLoS One, 2014, 9(6): e97582 [25] He M Z, Zhang K, Tan H J, et al. Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions. Ecology & Evolution, 2015, 5(7): 1494-1503. [26] Zhang R H.Study on the genetic variation of Tamarix chinensis populations. Nanjing: Nanjing Forestry University, 2011. 张如华. 柽柳群体遗传变异研究. 南京: 南京林业大学, 2011. [27] Huang W D, Zhao X Y, Li Y L, et al. Genetic diversity analysis of Caragana microphylla population in different altitude gradients. Pratacultural Science, 2015, 32(4): 552-559. 黄文达, 赵学勇, 李玉霖, 等. 不同海拔梯度下小叶锦鸡儿的居群遗传多样性. 草业科学, 2015, 32(4): 552-559. [28] Li M, Wang S X, Gao B J.Analysis of genetic diversity of chinese pine (Pinus tabulaeformis) natural secondary forest populations and correlation with theirs habitat ecological factors. Acta Ecologica Sinica, 2013, 33(12): 3602-3610. 李明, 王树香, 高宝嘉. 油松天然次生林居群遗传多样性及与产地地理气候因子的关联分析. 生态学报, 2013, 33(12): 3602-3610. |