[1] Li X D, Wang X L, Cai Y M, et al.Arabidopsis heat stress transcription factors A2 ( HSFA2 ) and A3 ( HSFA3 ) function in the same heat regulation pathway. Acta Physiologiae Plantarum, 2017, 39(3): 67-76. [2] Li D F, Li P F, Ma B L, et al. Effects of high temperature on the yield and morphology of alfalfa. Acta Agrestia Sinica, 2015, 23(4): 758-762. 李德锋, 李朴芳, 马保罗, 等. 温控条件下高温胁迫对紫花苜蓿地上部分生长的影响. 草地学报, 2015, 23(4): 758-762. [3] Si D, Mu L, Zhao H K, et al. High temperature cutting time: Effect on regrowth of non-dormancy alfalfa. Chinese Agricultural Science Bulletin, 2018, 34(2): 89-94. 斯达, 穆麟, 赵红凯, 等. 高温刈割时期对非秋眠紫花苜蓿再生的影响. 中国农学通报, 2018, 34(2): 89-94. [4] Shao C G, Wang H, Bi Y F.Relationship between endogenous polyamines and tolerance in Medicago sativa L. under heat stress. Acta Agrestia Sinica, 2015, 23(6): 1214-1219. 邵辰光, 王荟, 毕玉芬. 高温胁迫下紫花苜蓿多胺含量与耐热性的关系. 草地学报, 2015, 23(6): 1214-1219. [5] Zhao Y, Ma X L, Che W G, et al. Changes of endogenous hormones of Medicago sativa L. ‘Deqin’ under heat stress. Acta Agrestia Sinica, 2016, 24(2): 358-362. 赵雁, 马向丽, 车伟光, 等. 高温胁迫下‘德钦’紫花苜蓿内源激素的变化. 草地学报, 2016, 24(2): 358-362. [6] Lee K W, Cha J Y, Mun J Y, et al. Heterologous expression of MsHsp23, a Medicago sativa small heat shock protein, enhances heat stress tolerance in creeping bentgrass. Journal of Animal & Plant Sciences, 2015, 25(3): 884-891. [7] Soares-cavalcantin M, Belarmino L C, Kido E A, et al. Overall picture of expressed Heat Shock Factors in Glycine max, Lotus japonicus and Medicago truncatula. Genetics & Molecular Biology, 2012, 35(1 Suppl): 247-259. [8] Lee K W, Rahman M, Jun C G, et al. Identification of cold and heat-induced differentially expressed genes in alfalfa (Medicago sativa L.) leaves. Journal of Animal and Plant Sciences, 2017, 27(4):1231-1237. [9] Scharf K D, Berberich T, Ebersberger I, et al. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim Biophys Acta, 2012, 1819(2): 104-119. [10] Gulledge A A, Roberts A D, Vora H, et al. Mining Arabidopsis thaliana RNA-seq data with Integrated Genome Browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a. American Journal of Botany, 2012, 99(2): 219-231. [11] Yoshimura K, Mori T, Yokoyama K, et al. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, AtSR45a, in response to high-light stress using a tiling array. Plant & Cell Physiology, 2011, 52(10): 1786-1805. [12] Chu X L, Feng M G, Ying S H.Transcriptomic analysis reveals the potential antioxidant pathways regulated by multiprotein bridging factor 1 (BbMBF1) in the fungal entomopathogen Beauveria bassiana. Biocontrol Science & Technology, 2015, 25(11): 1-28. [13] Fan G, Zhang K, Huang H, et al. Multiprotein-bridging factor 1 regulates vegetative growth, osmotic stress, and virulence in Magnaporthe oryzae. Current Genetics, 2017, 63(2): 1-17. [14] Suzuki N, Bajad S, Shuman J, et al. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. Journal of Biological Chemistry, 2008, 283(14): 9269-9275. [15] Peltonen-sainio P, Jauhiainen L, Trnka M, et al. Coincidence of variation in yield and climate in Europe. Agriculture Ecosystems & Environment, 2010, 139(4): 483-489. [16] Qin D, Wang F, Geng X, et al. Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L.) Multiprotein Bridging Factor, confers heat tolerance in both yeast and rice. Plant Molecular Biology, 2015, 87(1/2): 31-45. [17] Saleh O, Harb J, Karrity A, et al. Identification of differentially expressed genes in two grape varieties cultivated in semi-arid and temperate regions from West-Bank, Palestine. Agri Gene. 2017, 7: 34-42. [18] Xu Y, Huang B.Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. Bmc Genomics, 2018, 19(1): 70-97. [19] Li X, Yu E, Fan C, et al. Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta, 2012, 236(2): 579-596. [20] Yu E, Fan C, Yang Q, et al. Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling. PLoS One, 2014, 9(7): e101914. [21] Li X D.Screening of Arabidopsis IKU2 interacting proteins and analysis of an autotetraploid Arabidopsis. Wuhan: Huazhong Agricultural University, 2012. 李小冬. 拟南芥IKU2互作蛋白鉴定及同源四倍体分析. 武汉: 华中农业大学, 2012. [22] De K B, Blombach F, Wu H, et al. Role of multiprotein bridging factor 1 in archaea: Bridging the domains? Biochemical Society Transactions, 2009, 37(1): 52-57. [23] Guo W L, Chen R G, Du X H, et al. Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1. BMC Plant Biology, 2014, 14(1): 138-151. [24] Kim M J, Lim G H, Kim E S, et al. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the Multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. Biochemical & Biophysical Research Communications, 2007, 354(2): 440-446. [25] Tang P H, Chen G P, Pan Y, et al. Cloning and analysis of pathogen resistance of multiprotein bridging factor gene LeMBF1 in tomato. Life Science Research, 2012, 16(2): 138-182. [26] Alavilli H, Lee H, Park M, et al. Antarctic moss Multiprotein Bridging Factor 1c overexpression in Arabidopsis resulted in enhanced tolerance to salt stress. Frontiers in Plant Science, 2017, 8: 1-15 [27] Rizhsky L, Liang H, Shuman J, et al. When defense pathways collide: The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 2004, 134(4): 1683-1696. [28] Liu H C, Liao H T, Charng Y Y.The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell & Environment, 2011, 34(5): 738-751. [29] Suzuki N, Sejima H, Tam R, et al. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant Journal, 2011, 66(5): 844-851. [30] Clarke S M, Cristescu S M, Miersch O, et al. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist, 2010, 182(1): 175-187. [31] Li S J, Fu Q T, Chen LG, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta, 2011, 233(6): 1237-1252. [32] Suzuki N, Rizhsky L, Liang H J, et al. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional co-activator multiprotein bridging factor 1c. Plant Physiology, 2005, 139(3): 1313-1322. [33] Li S J, Zhou X, Chen L G, et al. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Molecules and Cells, 2010, 29(5): 475-483. |