草业学报 ›› 2018, Vol. 27 ›› Issue (4): 178-188.DOI: 10.11686/cyxb2017223
陆姣云1,段兵红1,杨梅1,杨晗2,杨惠敏1*
收稿日期:
2017-05-08
修回日期:
2017-08-27
出版日期:
2018-04-20
发布日期:
2018-04-20
通讯作者:
*,E-mail: huimyang@lzu.edu.cn
作者简介:
陆姣云(1989-),女,甘肃兰州人,在读博士。E-mail: lujy09@lzu.edu.cn
基金资助:
LU Jiao-yun1, DUAN Bing-hong1, YANG Mei1, YANG Han2, YANG Hui-min1*
Received:
2017-05-08
Revised:
2017-08-27
Online:
2018-04-20
Published:
2018-04-20
摘要: 植物养分重吸收是植物组织或器官在衰老脱落前将部分养分(主要如氮、磷)转移到其他成活组织的过程,能延长养分在植物体内的存留时间,提高养分利用效率,减少植物对土壤养分的依赖,是植物适应环境的重要策略之一。本研究综述了土壤水分和肥力、光照、温度等环境因子和寿命、个体发育等遗传特性对植物叶片氮磷养分重吸收的影响。不同生活型或功能型的叶片养分重吸收不同;施肥会改变土壤速效养分的含量和比例,从而调控叶片养分重吸收;土壤水分通过调节土壤养分有效性而影响叶片养分重吸收;植物在生长过程中,不同时期对养分的需求有所差异,对养分的敏感程度和吸收能力也各不相同,从而表现出不同叶片养分重吸收特征;除了叶片之外,植物的其他组织器官(如,细茎、树木的芯材和能够储存养分的根)也可以进行养分重吸收。因此,植物叶片养分重吸收易受多种因素的影响,不同物种的重吸收能力存在差异,同一物种在不同时、空及相关因素变化下的重吸收特性也不同。深入研究植物养分重吸收规律和调控机制有助于进一步揭示植物的环境适应性,能为提高水肥管理水平,权衡生产力和适应性,实现系统生产和生态可持续发展提供理论依据。
陆姣云,段兵红,杨梅,杨晗,杨惠敏. 植物叶片氮磷养分重吸收规律及其调控机制研究进展[J]. 草业学报, 2018, 27(4): 178-188.
LU Jiao-yun, DUAN Bing-hong, YANG Mei, YANG Han, YANG Hui-min. Research progress in nitrogen and phosphorus resorption from senesced leaves and the influence of ontogenetic and environmental factors[J]. Acta Prataculturae Sinica, 2018, 27(4): 178-188.
[1] Killingbeck K T. The terminological jungle revisited-making a case for use of the term resorption. Oikos, 1986, 46(2): 263-264. [2] Aerts R, de Caluwe H. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology, 1997, 78(1): 244-260. [3] Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67. [4] Aerts R. Nutrient resorption from senescing leaves of perennials: Are there general patterns. Journal of Ecology, 1996, 84(4): 597-608. [5] Killingbeck K T. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 1996, 77(6): 1716-1727. [6] Van Heerwaarden L M, Toet S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 2003, 91(6): 1060-1070. [7] Covelo F, Rodríguez A, Gallardo A. Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercus robur population. Plant and Soil, 2008, 311(1/2): 109-119. [8] Reed S C, Townsend A R, Davidson E A, et al. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 2012, 196(1): 173-180. [9] Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 2012, 82(2): 205-220. [10] Zhao Q, Liu X Y, Hu Y L, et al. Effects of nitrogen addition on nutrient allocation and nutrient resorpiton efficiency in Larix gmelinii. Scientia Silvae Sinicae, 2010, 46(5): 14-19. 赵琼, 刘兴宇, 胡亚林,等. 氮添加对兴安落叶松养分分配和再吸收效率的影响. 林业科学, 2010, 46(5): 14-19. [11] May J D, Killingbeck K T. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 1992, 73: 1868-1878. [12] Blanco J A, Imbert J B, Castillo F J. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the Pyrenees. Ecological Applications, 2009, 19(3): 682-698. [13] Lü X T, Freschet G T, Flynn D F B, et al. Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology, 2012, 100(1): 144-150. [14] Veneklaas E J, Lambers H, Bragg J, et al. Opportunities for improving phosphorus use efficiency in crop plants. New Phytologist, 2012, 195(2): 306-320. [15] Marschner P. Marschner’s mineral nutrition of higher plants (3rd edition). Amsterdam, Netherlands: Academic Press (Elsevier), 2012. [16] Mao R, Song C C, Zhang X H, et al. Response of leaf, sheath and stem nutrient resorption to 7 years of N addition in freshwater wetland of Northeast China. Plant and Soil, 2013, 364(1/2): 385-394. [17] Van Heerwaarden L M, Toet S, Aerts R. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: Facts and solutions. Oikos, 2003, 101(3): 664-669. [18] Kobe R K, Lepczyk C A, Iyer M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 2005, 86(10): 2780-2792. [19] Mediavilla S, García-Iglesias J, González-Zurdo P, et al. Nitrogen resorption efficiency in mature trees and seedlings of four tree species co-occurring in a Mediterranean environment. Plant and Soil, 2014, 385(1/2): 205-215. [20] Chapin F S, Kedrowski R A. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 1983, 64(2): 376-391. [21] Lü X T, Cui Q, Wang Q B, et al. Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. Ecological Engineering, 2011, 37(3): 534-538. [22] Vitousek P M. Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems, 1998, 1(4): 401-407. [23] Zeng D H, Chen G S, Chen F S, et al. Foliar nutrients and their resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Scientia Silvae Sinicae, 2005, 41(5): 21-27. 曾德慧, 陈广生, 陈伏生, 等. 不同林龄樟子松叶片养分含量及其再吸收效率. 林业科学, 2005, 41(5): 21-27. [24] Sterner R W, Elser J J. Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton, USA: Princeton University Press, 2002. [25] Wang Z N, Lu J Y, Yang H M, et al. Resorption of nitrogen, phosphorus and potassium from leaves of lucerne stands of different ages. Plant and Soil, 2014, 383(1/2): 301-312. [26] Nambiar E K S, Fife D N. Nutrient retranslocation in temperate conifers. Tree Physiology, 1991, 9(1/2): 185-207. [27] Silla F, Escudero A. Uptake, demand and internal cycling of nitrogen in saplings of Mediterranean quercus species. Oecologia, 2003, 136(1): 28-36. [28] Chapin F S, Moilanen L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 1991, 72(2): 709-715. [29] Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 2001, 15: 351-359. [30] Del Arco J M, Escudero A, Garrido M V. Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 1991, 72(2): 701-708. [31] Escudero A, Del Arco J M, Sanz I C, et al. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia, 1992, 90(1): 80-87. [32] Diehl P, Mazzarino M J, Funes F, et al. Nutrient conservation strategies in native Andean-Patagonian forests. Journal of Vegetation Science, 2003, 14(1): 63-70. [33] Cai Z Q, Bongers F. Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south-west China. Journal of Tropical Ecology, 2007, 23(1): 115-118. [34] Tang L Y. Study on leaves nutrient absorption of woody plant. Beijing: Beijing University, 2012. 汤璐瑛. 木本植物叶片养分重吸收研究. 北京: 北京大学, 2012. [35] Zhang J H, Li H, Shen H H, et al. Effects of nitrogen addition on nitrogen resorption in temperate shrublands in northern China. PloS One, 2015, 10(6): e0130434. [36] Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu, China. Acta Prataculturae Sinica, 2016, 25(12): 76-83. 段兵红, 陆姣云, 刘敏国, 等. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系. 草业学报, 2016, 25(12): 76-83. [37] de Campos M C, Pearse S J, Oliveira R S, et al. Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment. Annals of Botany, 2013, 111(3): 445-454. [38] Li X F, Zheng X B, Han S J, et al. Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China. Canadian Journal of Forest Research, 2010, 40(11): 2256-2261. [39] Pugnaire F I, ChapinF S. Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology, 1993, 74(1): 124-129. [40] Eckstein R L, Karlsson P S, Weih M. Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist, 1999, 143(1): 177-189. [41] Tully K L, Wood T E, Schwantes A M, et al. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentaclethra macroloba. Ecology, 2013, 94(4): 930-940. [42] Wright I J, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology, 2003, 17(1): 10-19. [43] Chen F S, Hu X F, Ge G. Leaf N: P stoichiometry and nutrient resorption efficiency of Ophiopogon japonicus in Nanchang City. Acta Prataculturae Sinica, 2007, 16(4): 47-54. 陈伏生, 胡小飞, 葛刚. 城市地被植物麦冬叶片氮磷化学计量比和养分再吸收效率. 草业学报, 2007, 16(4): 47-54. [44] Lovelock C E, Feller I C, Ball M C, et al. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecology Letters, 2007, 10(12): 1154-1163. [45] Grime J P, Cornelissen J H C, Thompson K, et al. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos, 1996, 77(3): 489-494. [46] Xing X R, Han X G, Chen L Z. A review on research of plant nutrient use efficiency. Chinese Journal of Applied Ecology, 2000, 11(5): 785-790. 邢雪荣,韩兴国,陈灵芝. 植物养分利用效率研究综述. 应用生态学报, 2000, 11(5): 785-790. [47] Vázquez de Aldana B R, Berendse F. Nitrogen-use efficiency in six perennial grasses from contrasting habitats. Functional Ecology, 1997, 11(5): 619-626. [48] Silver W L. Is nutrient availability related to plant nutrient use in humid tropical forests. Oecologia, 1994, 98(3/4): 336-343. [49] Güsewell S. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology, 2005, 19(2): 344-354. [50] Kozovits A R, Bustamante M M C, Garofalo C R, et al. Nutrient resorption and patterns of litter production and decomposition in a neotropical savanna. Functional Ecology, 2007, 21(6): 1034-1043. [51] Lü X T, Han X G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 2010, 327(1/2): 481-491. [52] Lü X T, Reed S C, Yu Q, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions. Plant and Soil, 2015, 398(1/2): 111-120. [53] Rejmankova E. Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status. New Phytologist, 2005, 167(2): 471-482. [54] Richardson S J, Peltzer D A, Allen R B, et al. Resorption proficiency along a chronosequence: Responses among communities and within species. Ecology, 2005, 86(1): 20-25. [55] Norris M D, Reich P B. Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status. Plant and Soil, 2009, 316(1/2): 193-204. [56] Enoki T, Kawaguchi H. Nitrogen resorption from needles of Pinus thunbergii Parl. growing along a topographic gradient of soil nutrient availability. Ecological Research, 1999, 14(1): 1-8. [57] Vourlitis G L, de Almeida L F, Lawrence S, et al. Nutrient resorption in tropical savanna forests and woodlands of central Brazil. Plant Ecology, 2014, 215(9): 963-975. [58] Son Y, Lee I K, Ryu S R. Nitrogen and phosphorus dynamics in foliage and twig of pitch pine and Japanese larch plantations in relation to fertilization. Journal of Plant Nutrition, 2000, 23(5): 697-710. [59] Agüero M L, Puntieri J, Mazzarino M J, et al. Seedling response of Nothofagus species to N and P: linking plant architecture to N/P ratio and resorption proficiency. Trees, 2014, 28(4): 1185-1195. [60] Boerner R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. Journal of Applied Ecology, 1984, 21(3): 1029-1040. [61] Eckstein R L, Karlsson P S. Above-ground growth and nutrient use by plants in a subarctic environment: effects of habitat, life-form and species. Oikos, 1997, 79(2): 311-324. [62] Soudzilovskaia N A, Onipchenko V G, Cornelissen J H C, et al. Effects of fertilisation and irrigation on ‘foliar afterlife’in alpine tundra. Journal of Vegetation Science, 2007, 18(5): 755-766. [63] Liu P, Huang J H, Han X G, et al. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 2006, 34(2/3): 266-275. [64] Wang C H, Wan S, Xing X R, et al. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology and Biochemistry, 2006, 38(5): 1101-1110. [65] Field C, Merino J, Mooney H A. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 1983, 60(3): 384-389. [66] Killingbeck K T. Can zinc influence nutrient resorption? A test with the drought-deciduous desert shrub Fouquieria splendens (ocotillo). Plant and Soil, 2008, 304(1/2): 145-155. [67] Sanz-Pérez V, Castro-Díez P, Millard P. Effects of drought and shade on nitrogen cycling in the leaves and canopy of Mediterranean quercus seedlings. Plant and Soil, 2009, 316(1/2): 45-56. [68] Yasumura Y, Onoda Y, Hikosaka K, et al. Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species. Plant Ecology, 2005, 178(1): 29-37. [69] Lusk C H, Contreras O. Foliage area and crown nitrogen turnover in temperate rain forest juvenile trees of differing shade tolerance. Journal of Ecology, 1999, 87(6): 973-983. [70] Duan B L, Paquette A, Juneau P, et al. Nitrogen resorption in Acer platanoides and Acer saccharum: influence of light exposure and leaf pigmentation. Acta Physiologiae Plantarum, 2014, 36(11): 3039-3050. [71] Nordell K O, Karlsson P S. Resorption of nitrogen and dry matter prior to leaf abscission: variation among individuals, sites and years in the mountain birch. Functional Ecology, 1995, 9(2): 326-333. [72] Liu H Z, Zheng F R, Zhao S J. Effects of heat- stress on the active oxygen-quenching system in leaf of wheat varieties with different senescence types. Guizhou Agricultural Sciences, 2006, 34(1): 8-10. 刘洪展, 郑风荣, 赵世杰. 高温胁迫对不同衰老型小麦叶片中活性氧清除系统的影响. 贵州农业科学, 2006, 34(1): 8-10. [73] Zhang L P, Jing Q, Dai T B, et al. Effects of temperature and illumination on flag leaf photosynthetic characteristics and senescence of wheat cultivars with different grain quality. Chinese Journal of Applied Ecology, 2008, 19(2): 311-316. 张黎萍, 荆奇, 戴廷波, 等. 温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响. 应用生态学报, 2008, 19(2): 311-316. [74] Pakonen T, Laine K, Havas P, et al. Effects of berry production and deblossoming on growth, carbohydrates and nitrogen compounds in Vaccinium myrtillus in north Finland. Acta Botanica Fennica, 1988, 136: 37-42. [75] Cipollini M L, Stiles E W. Costs of reproduction in Nyssa sylvatica: sexual dimorphism in reproductive frequency and nutrient flux. Oecologia, 1991, 86(4): 585-593. [76] Escudero A, Mediavilla S. Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. Journal of Ecology, 2003, 91(5): 880-889. [77] Chapin F S, Schulze E D, Mooney H A. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 1990, 21(1): 423-447. [78] Huang J J, Wang X H, Yan E R. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecology and Management, 2007, 239(1/2/3): 150-158. [79] Kimmins J P. Evaluation of consequences for future tree productivity of the loss of nutrients in whole-tree harvesting. Forest Ecology and Management, 1977, 1: 169-183. [80] Mediavilla S, Escudero A. Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecology and Management, 2004, 187(2/3): 281-294. [81] Liu B, Wang L H, Yin L M, et al. Seasonal variation and resorption characteristics of leaf N, P, and K in two aged Xanthoceras sorbifolia plantations. Chinese Journal of Ecology, 2010, 29(7): 1270-1276. 刘波, 王力华, 阴黎明, 等. 两种林龄文冠果叶N、P、K的季节变化及再吸收特征. 生态学杂志, 2010, 29(7): 1270-1276. [82] Li R H, Wang S L, Wang Q K. Nutrient contents and resorption characteristics in needles of different age Pinus massoniana (Lamb.) before and after withering. Chinese Journal of Applied Ecology, 2008, 19(7): 1443-1447. 李荣华, 汪思龙, 王清奎. 不同林龄马尾松针叶凋落前后养分含量及回收特征. 应用生态学报, 2008, 19(7): 1443-1447. [83] Zhuang Y Z. Nutrients and their resorption efficiencies in leaves of Pinus massoniana of different ages. Anhui Agricultural Science Bulletin, 2010, 16(18): 27-28, 52. 庄亚珍. 不同林龄马尾松针叶养分含量及其再吸收效率. 安徽农学通报, 2010, 16(18): 27-28, 52. [84] Deng H J, Chen A M, Yang S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena leucocephal. Journal of Applied and Environmental Biology, 2015, 21(3): 522-527. 邓浩俊, 陈爱民, 严思维, 等.不同林龄新银合欢重吸收率及其C:N:P化学计量特征. 应用与环境生物学报, 2015, 21(3): 522-527. [85] He P, Jin J Y, Lin B. Effects of nitrogen fertilizer on leaf senescence of spring maize and its mechanism. Scientia Agricultura Sinica, 1998, 31(3): 66-71. 何萍, 金继运,林葆. 氮肥用量对春玉米叶片衰老的影响及其机理研究. 中国农业科学, 1998, 31(3): 66-71. [86] Nambiar E K S. Do nutrients retranslocate from fine roots. Canadian Journal of Forest Research, 1987, 17(8): 913-918. [87] Lajtha K. Nutrient reabsorption efficiency and the response to phosphorus fertilization in the desert shrub Larrea tridentata (DC.) Cov. Biogeochemistry, 1987, 4(3): 265-276. [88] Côté B, Fyles J W, Djalilvand H. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Annals of Forest Science, 2002, 59(3): 275-281. [89] Pugnaire F I, Chapin F S. Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia, 1992, 90(1): 120-126. [90] Shen C G. Plant senescence physiology and molecular biology. Beijing: China Agriculture Press, 2001. 沈成国. 植物衰老生理与分子生物学. 北京: 中国农业出版社, 2001. [91] Wang X W, Cao H. Studies on mechanism of leaf senescence in high plant. Journal of Shanxi Agricultural University (Natural Science Edition), 2004, 24(4): 416-419. 王孝威, 曹慧. 高等植物衰老的机理研究. 山西农业大学学报(自然科学版), 2004, 24(4): 416-419. [92] Zhou F, Hua C, Wang R L. The leaf senescence and its regulation. Northern Horticulture, 2012, (1): 171-172. 周峰, 华春, 王仁雷. 植物叶片衰老及调控. 北方园艺, 2012, (1): 171-172. [93] Himelblau E, Amasino R M. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. Journal of Plant Physiology, 2001, 158(10): 1317-1323. [94] Li Q, Zhu Y X. The progress of plant senescence research and plant molecular breeding. Molecular Plant Breeding, 2003, 1(3): 289-296. 李晴, 朱玉贤. 植物衰老的研究进展及其在分子育种中的应用. 分子植物育种, 2003, 1(3): 289-296. [95] Yan W Y, Ye S H, Dong Y J, et al. Research progress related to plant leaf senescence. Crops, 2010, (4): 4-9. 严雯奕, 叶胜海, 董彦君, 等. 植物叶片衰老相关研究进展. 作物杂志, 2010, (4): 4-9. [96] Nooden L D, Guiamet J J, John I. Senescence mechanisms. Physiologia Plantarum, 1997, 101(4): 746-753. [97] Yoshida S. Molecular regulation of leaf senescence. Current Opinion Plant Biology, 2003, 6(1): 79-84. [98] Ono K, Nishi Y, Watanabe A, et al. Possible mechanisms of adaptive leaf senescence. Plant Biology, 2001, 3(3): 234-243. [99] Hellmann H, Estelle M. Plant development: Regulation by protein degradation. Science, 2002, 297: 793-797. [100] Zhang J R. Effects of fertilization on leaf N and P resorption in an alpine meadow of the Tibetan Plateau. Lanzhou: Lanzhou University, 2016. 张晶然. 施肥对青藏高原高寒草甸植物叶片氮磷重吸收的影响. 兰州: 兰州大学, 2016. [101] Brant A N, Chen H Y H. Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences, 2015, 34(5): 471-486. [102] Freschet G T, Aerts R, Cornelissen J H C. A plant economics spectrum of litter decomposability. Functional Ecology, 2012, 26(1): 56-65. [103] Chen F S, Niklas K J, Liu Y, et al. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiology, 2015, 35(10): 1106-1117. [104] McClaugherty C A, Aber J D, Melillo J M. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology, 1982, 63(5): 1481-1490. [105] Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia, 1990, 84(3): 391-397. [106] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 2000, 147(1): 13-31. [107] Gordon W S, Jackson R B. Nutrient concentrations in fine roots. Ecology, 2000, 81(1): 275-280. [108] Milla R, Castro-Diez P, Maestro-Martinez M, et al. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytologist, 2005, 168(1): 167-178. [109] Gan S, Amasino R M. Making sense of senescence (Molecular genetic regulation and manipulation of leaf senescence). Plant Physiology, 1997, 113(2): 313-319. [110] Davies P J, Gan S. Towards an integrated view of monocarpic plant senescence. Russian Journal of Plant Physiology, 2012, 59(4): 467-478. |
[1] | 孙思思, 吴战平, 肖启涛, 于飞, 古书鸿, 方荻, 李浪, 赵兴炳. 云贵高原草地生态系统CO2通量变化特征[J]. 草业学报, 2020, 29(4): 184-191. |
[2] | 宋梅玲, 王玉琴, 鲍根生, 王宏生. 狼毒防除对高寒草地群落植物养分重吸收的影响[J]. 草业学报, 2020, 29(10): 47-57. |
[3] | 王振南, 赵梅, 杨燕, 李富宽, 王慧, 吕慎金. 苜蓿叶片氮、磷和钾养分重吸收与化学计量比的偶联关系[J]. 草业学报, 2019, 28(11): 177-183. |
[4] | 孙丽坤, 刘光琇, 张宝贵, 章高森. 环境因子对中国柽柳遗传变异的影响[J]. 草业学报, 2019, 28(10): 178-186. |
[5] | 范顺祥, 郑建伟, 魏士凯, 黄选瑞, 张志东. 河北省森林草原区主要草本植物功能群适宜分布预测[J]. 草业学报, 2018, 27(3): 24-32. |
[6] | 杨梅, 王亚亚, 陆姣云, 刘敏国, 段兵红, 杨惠敏. 典型果园生草模式及果草系统资源调控研究进展[J]. 草业学报, 2017, 26(9): 189-199. |
[7] | 葛兆轩, 孙国龙, 袁业, 黄选瑞, 张志东. 河北省森林草原区草本植物物种多样性和功能多样性[J]. 草业学报, 2017, 26(7): 35-44. |
[8] | 陶冶, 刘耀斌, 吴甘霖, 张元明. 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格[J]. 草业学报, 2016, 25(7): 13-23. |
[9] | 张永超, 袁晓波, 牛得草, 吴淑娟, 张典业, 宗文杰, 傅华. 玛曲高寒草甸高原鼠兔种群数量对植被调控措施的响应[J]. 草业学报, 2016, 25(2): 87-94. |
[10] | 段兵红, 陆姣云, 刘敏国, 杨梅, 王亚亚, 王振南, 杨惠敏. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系[J]. 草业学报, 2016, 25(12): 76-83. |
[11] | 董臣飞, 顾洪如, 丁成龙, 许能祥, 张文洁. 水稻生育后期外源赤霉素调控稻草饲用品质的机理研究[J]. 草业学报, 2016, 25(11): 94-102. |
[12] | 刘强, 张锁科, 孙万斌, 俞玲, 马晖玲. 不同营养调控对草地早熟禾生长和内源激素含量影响研究[J]. 草业学报, 2015, 24(2): 31-40. |
[13] | 刘芳,王家艳,周蕴薇. 球根植物休眠调控的分子机制研究进展[J]. 草业学报, 2013, 22(6): 295-304. |
[14] | 蒋乔峰,陈静波,宗俊勤,李珊,褚晓晴,郭海林,刘建秀. 盐胁迫下磷素对沟叶结缕草生长及Na+和K+含量的影响[J]. 草业学报, 2013, 22(3): 162-. |
[15] | 李杰,蔡立群,张鸣,张仁陟. 不同耕作措施下旱作春小麦叶水势动态及其对环境因子的响应[J]. 草业学报, 2012, 21(6): 75-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||