Reference:[1]Lynch J P. Root architecture and pant productivity[J]. Plant Physiology, 1995, 109: 7-13.[2]Forde B G, Lorenzo H. The nutritional control of root development[J]. Plant and Soil, 2001, 232: 51-68.[3]Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant, Cell and Environment, 2005, 28: 67-77.[4]Osmont K S, Sibout R, Hardtke C S. Hidden branches: developments in root system architecture[J]. Annual Reviews of Plant Biology, 2007, 58: 93-113.[5]Wu Q S. Research and Application of Horticultural Plants Arbuscular mycorrhizal[M]. Bingjing: Science Press, 2010.[6]Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels[J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52.[7]Schellenbaum L, Berta G, Ravolanirina F, et al. Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species(Vitis vinifera L.)[J]. Annals of Botany, 1991, 68: 135-141. [8]Yao Q, Wang L R, Zhu H H, et al. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange(Poncirus trifoliata L. Raf.) seedlings[J]. Scientia Horticulturae, 2009, 121: 458-461.[9]Willaume M, Pages L. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings(Quercus pubescens)[J]. Annals Botany, 2011, 107: 653-662.[10]Bago B, Pfeffer P E, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas[J]. Plant Physiology, 2000, 124: 949-958.[11]Bago B, Pfeffer P E, Abubaker J, et al. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid[J]. Plant Physiology, 2003, 131: 1496-1507.[12]Wu Q S, Li G H, Zou Y N. Improvement of root system architecture in peach (Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39: 232-236.[13]Li Z, Peng Y, Su X Y. Physiological responses of white clover by different leaf types associated with anti-oxidative enzyme protection and osmotic adjustment under drought stress[J]. Acta Prataculturae Sinica, 2013, 22(2): 257-263.[14]Zhang Y, Zhu Y, Yao T, et al. Interactions of four PGPRs isolated from pasture rhizosphere[J]. Acta Prataculturae Sinica, 2013, 22(1): 29-37.[15]Wang X K. Plant Physiology and Biochemistry Experimental Principles and Techniques (2nd Edition)[M]. Bingjing: Higher Education Press, 2006.[16]Wu Q S, Zou Y N, Zhan T T, et al. Polyamines participate in mycorrhizal and root development of citrus (Citrus tangerine) seedling[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2010, 38: 25-31.[17]Zhao J L, He X L. Effects of AM fungi on the growth and drought-resistance of Artemisia ordosica[J]. Acta Agriculturae Boreali-Sinica, 2007, 22(5): 184-188.[18]Bi Y L, Ding B J, Quan W Z,et al. Influence of VA mycorrhize on nutrient and water absorption in white clover[J]. Acta Agrestia Sinica, 2001, 9(2): 154-158.[19]Simard S W, Beiler K J, Bingham M A, et al. Mycorrhizal networks: Mechanisms, ecology and modelling[J]. Fungal Biology Reviews, 2012, 26:39-60.[20]Wu Q S, He X H, Zou Y N, et al. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines[J]. Plant Growth Regulation, 2012, 68: 27-35.[21]Ji C L, Tian M M, Ma J F, et al. Advances in the researches on the effects of arbuscular mycorrhizal fungi on plant nutrition metabolism and growth effects[J]. Journal of Zhejiang Normal University(Natural Science), 2010, 33(3): 303-309.[22]Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control growth during early seedlings development in Arabidopsis[J]. Proceeding of the National Academy of Sciences, 2012, 109: 11217-11221.[23]Francis D. The cell cycle in plant development[J]. New Phytologist, 1992, 122: 1-20.参考文献:[1]Lynch J P. Root architecture and pant productivity[J]. Plant Physiology, 1995, 109: 7-13.[2]Forde B G, Lorenzo H. The nutritional control of root development[J]. Plant and Soil, 2001, 232: 51-68.[3]Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant, Cell and Environment, 2005, 28: 67-77.[4]Osmont K S, Sibout R, Hardtke C S. Hidden branches: developments in root system architecture[J]. Annual Reviews of Plant Biology, 2007, 58: 93-113.[5]吴强盛. 园艺植物丛枝菌根研究与应用[M]. 北京: 科学出版社,2010.[6]叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响[J]. 草业学报, 2013, 22(1): 46-52.[7]Schellenbaum L, Berta G, Ravolanirina F,et al. Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species(Vitis vinifera L.)[J]. Annals of Botany, 1991, 68: 135-141. [8]Yao Q, Wang L R, Zhu H H,et al. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings[J]. Scientia Horticulturae, 2009, 121: 458-461.[9]Willaume M, Pages L. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings(Quercus pubescens)[J]. Annals Botany, 2011, 107: 653-662.[10]Bago B, Pfeffer P E, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas[J]. Plant Physiology, 2000, 124: 949-958.[11]Bago B, Pfeffer P E, Abubaker J,et al. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid[J]. Plant Physiology, 2003, 131: 1496-1507.[12]Wu Q S, Li G H, Zou Y N. Improvement of root system architecture in peach(Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39: 232-236.[13]李州, 彭燕, 苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应[J]. 草业学报, 2013, 22(2): 257-263.[14]张英, 朱颖, 姚拓, 等. 分离自牧草根际四株促生菌株(PGPR)互作效应研究[J]. 草业学报, 2013, 22(1): 29-37.[15]王学奎.植物生理生化实验原理和技术(第2版)[M]. 北京: 高等教育出版社, 2006.[16]Wu Q S, Zou Y N, Zhan T T,et al. Polyamines participate in mycorrhizal and root development of citrus (Citrus tangerine) seedling[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2010, 38: 25-31.[17]赵金莉,贺学礼.AM真菌对油蒿生长和抗旱性的影响[J].华北农学报,2007, 22(5): 184-188.[18]毕银丽, 丁保建, 全文智, 等. VA菌根对白三叶吸收水分和养分的影响[J].草地学报, 2001, 9(2): 154-158.[19]Simard S W, Beiler K J, Bingham M A,et al. Mycorrhizal networks: Mechanisms, ecology and modelling[J]. Fungal Biology Reviews, 2012, 26:39-60.[20]Wu Q S, He X H, Zou Y N,et al. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines[J]. Plant Growth Regulation, 2012, 68: 27-35.[21]吉春龙,田萌萌,马继芳,等. 丛枝菌根真菌对植物营养代谢与生长影响的研究进展[J].浙江师范大学学报(自然科学版), 2010, 33(3): 303-309.[22]Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control growth during early seedlings development in Arabidopsis[J]. Proceeding of the National Academy of Sciences, 2012, 109: 11217-11221.[23]Francis D. The cell cycle in plant development[J]. New Phytologist, 1992, 122: 1-20. |