[1] Zhang X. China proposes to achieve the goal of zero growth in the use of chemical fertilizers and pesticides by 2020—reducing “fertilizers” in agriculture will not affect food security. Countryside Agriculture Farmers, 2015, (4): 13-14. 张雪. 我国提出到2020年实现化肥和农药使用量零增长目标——农业减“肥”不会影响粮食安全. 农村·农业·农民, 2015, (4): 13-14. [2] Ministry of Agriculture of the PRC. Action plan for zero growth of chemical fertilizer use by 2020. Qinghai Agro-Technology Extension, 2015, (2): 3-5, 11. 中华人民共和国农业部. 到2020年化肥使用量零增长行动方案. 青海农技推广, 2015, (2): 3-5, 11. [3] Peng X L, Wang W, Zhou N, et al. Analysis of fertilizer application and its reduction potential in paddy fields of Heilongjiang Province. Scientia Agricultura Sinica, 2019, 52(12): 2092-2100. 彭显龙, 王伟, 周娜, 等. 基于农户施肥和土壤肥力的黑龙江水稻减肥潜力分析. 中国农业科学, 2019, 52(12): 2092-2100. [4] Liu Y X, Wang Y F, Lü H H, et al. Effects of different application rates of rice straw biochar and bamboo biochar on yield and quality of greengrocery (Brassica chinensis) and soil properties. Plant Nutrition and Fertilizer Science, 2013, (6): 1438-1444. 刘玉学, 王耀锋, 吕豪豪, 等. 不同稻秆炭和竹炭施用水平对小青菜产量、品质以及土壤理化性质的影响. 植物营养与肥料学报, 2013, (6): 1438-1444. [5] Sohi S P, Krull E, Lopez-Capel E, et al. A Review of biochar and its use and function in soil. Advances in Agronomy, 2010, 105(1): 47-82. [6] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. [7] Steiner C, Glaser B, Teixeira W G, et al. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 2008, 171(6): 893-899. [8] Rillig M C, Mummey D L. Mycorrhizas and soil structure. New Phytologist, 2006, 171(1): 41-53. [9] Naeem M A, Khalid M, Aon M, et al. Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. Journal of Plant Nutrition, 2018, 41(1): 112-122. [10] Sun L Y, Li L, Chen Z Z, et al. Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils. Soil Science and Plant Nutrition, 2014, 60(2): 254-265. [11] Li C J, Li D F, Zhou G S, et al. Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco. Acta Agronomica Sinica, 2019, 45(2): 289-296. 李成江, 李大肥, 周桂夙, 等. 不同种类生物炭对植烟土壤微生物及根茎病害发生的影响. 作物学报, 2019, 45(2): 289-296. [12] Kim J, Yoo G, Kim D, et al. Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Applied Soil Ecology, 2017, 117: 57-62. [13] Awad Y M, Lee S S, Kim K H, et al. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers. Chemosphere, 2018, 198: 40-48. [14] Zheng J F, Han J M, Liu Z W, et al. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agriculture Ecosystems & Environment, 2017, 241: 70-78. [15] Gao M Y, Jiang T, Han X R, et al. Effects of applying biochar-based fertilizer and biochar on organic carbon fractions and contents of brown soil. Scientia Agricultura Sinica, 2018, 51(11): 2126-2135. 高梦雨, 江彤, 韩晓日, 等. 施用炭基肥及生物炭对棕壤有机碳组分的影响. 中国农业科学, 2018, 51(11): 2126-2135. [16] Arif M, Ilyas M, Riaz M, et al. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crops Research, 2017, 214: 25-37. [17] Blackwell P, Krull E, Butler G, et al. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: An agronomic and economic perspective. Australian Journal of Soil Research, 2010, 48(6/7): 531-545. [18] Zhang W M, Guan X C, Huang Y W, et al. Biological effects of biochar and fertilizer interaction in soybean plant. Acta Agronomica Sinica, 2015, 41(1): 109-122. 张伟明, 管学超, 黄玉威, 等. 生物炭与化学肥料互作的大豆生物学效应. 作物学报, 2015, 41(1): 109-122. [19] Zhang H Z, Huang Y, Liu G, et al. Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Ecology and Envrionment, 2010, 19(11): 2713-2717. 张晗芝, 黄云, 刘钢, 等. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报, 2010, 19(11): 2713-2717. [20] Dempster D N, Gleeson D B, Solaiman Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 2012, 354(1/2): 311-324. [21] Wu A L, Wang J S, Dong E W, et al. Effect of application of biochar and straw on fate of fertilizer N in cinnamon soil. Acta Pedologica Sinica, 2019, 56(1): 176-185. 武爱莲, 王劲松, 董二伟, 等. 施用生物炭和秸秆对石灰性褐土氮肥去向的影响, 土壤学报, 2019, 56(1): 176-185. [22] Gu M Y, Liu H L, Li Z Q, et al. Impact of biochar application on soil nutrients and microbial diversities in continuous cultivated cotton fields in Xinjiang. Scientia Agricultura Sinica, 2014, 47(20): 4128-4138. 顾美英, 刘洪亮, 李志强, 等. 新疆连作棉田施用生物炭对土壤养分及微生物群落多样性的影响. 中国农业科学, 2014, 47(20): 4128-4138. [23] Bao S D. Agrochemical analysis of soil (Third Edition). Beijing: China Agriculture Press, 2000. 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. [24] Garland J L, Mills A L. Classification and haracterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359. [25] Zhou Q, Zhang X D, Ma S M, et al. Effects of intercropping green manure on soil carbon, nitrogen and soil microbial in rapeseed rhizosphere. Acta Ecologica Sinica, 2017, 37(23): 7965-7971. 周泉, 张小短, 马淑敏, 等. 间作绿肥对油菜根际土壤碳氮及根际微生物的影响. 生态学报, 2017, 37(23): 7965-7971. [26] Zhu W X, Zhao J X, Zhang P, et al. The comparison study of NIR and chemical method for determining quality parameters in rape-seed. Anhui Agricultural Science Bulletin, 2010, 16(17): 182-183, 185. 朱文秀, 赵继献, 张品, 等. 近红外光谱分析与化学方法检测油菜种子品质参数的比较. 安徽农学通报, 2010, 16(17): 182-183, 185. [27] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biology and Fertility of Soils, 2002, 35(4): 219-230. [28] Zhou Z D, Gao T, Zhu Q, et al. Increases in bacterial community network complexity induced by biochar-based fertilizer amendments to karst calcareous soil. Geoderma, 2019, 337: 691-700. [29] Lehmann J, Da Silva J P, Steiner C, et al. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin: Fertilizer, manure and charcoal amendments. Plant and Soil, 2003, 249(2): 343-357. [30] Li B, Fan C H, Zhang H, et al. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmospheric Environment, 2015, 100: 10-19. [31] Zhou J Z, Deng Y, Luo F, et al. Functional molecular ecological networks. mBio, 2010, 1(4): 1592-1601. [32] Oladele S O, Adeyemo A J, Awodun M A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma, 2019, 336: 1-11. [33] Wang Y, Zong N, He N P, et al. Soil microbial functional diversity patterns and drivers along an elevation gradient on Qinghai-Tibet, China. Acta Ecologica Sinica, 2018, 38(16): 5837-5845. 王颖, 宗宁, 何念鹏, 等. 青藏高原高寒草甸不同海拔梯度下土壤微生物群落碳代谢多样性. 生态学报, 2018, 38(16): 5837-5845. [34] Huang L L, Hu W J, Tao J, et al. Soil bacterial community structure and extracellular enzyme activities under different land use types in a long-term reclaimed wetland. Journal of Soils and Sediments, 2019, 19(5): 2543-2557. [35] Zou J. Study on response of winter rapeseed to NPKB fertilization and abundance & deficiency indices of soil nutrients. Wuhan: Huazhong Agricultural University, 2010. 邹娟. 冬油菜施肥效果及土壤养分丰缺指标研究. 武汉: 华中农业大学, 2010. [36] Hogy P, Franzaring J, Schwadorf K, et al. Effects of free-air CO2 enrichment on energy traits and seed quality of oilseed rape. Agriculture Ecosystems & Environment, 2010, 139(1/2): 239-244. [37] Liang J, Deng Y F, Mai B R. Effect of acid rain on the quality of double-low rapeseed. Journal of Anhui Agricultural Sciences, 2009, 37(26): 12467-12470. 梁骏, 郑有飞, 麦博儒. 酸雨胁迫对双低油菜籽粒品质的影响. 安徽农业科学, 2009, 37(26): 12467-12470. [38] Liang J. Effects of simulated acid rain on the growth,yield and quality of rape. Acta Ecologica Sinica, 2008, 28(1): 274-283. 梁骏. 模拟酸雨对油菜(Brassica napus L.)生长、产量及品质的影响. 生态学报, 2008, 28(1): 274-283. [39] Zhang Z L. Effect of environmental factors on seed color and reated quality characters of yellow-seeded rapeseed (Brassica napus L.). Chongqing: Southwest University, 2002. 张子龙. 环境对甘蓝型黄籽油菜粒色及其相关品质性状的影响. 重庆: 西南大学, 2002. [40] Lu J W. Response of, aphid to potasaium and technique of potassium application on rapeseed. Beijing: China Agriculture University, 1999. 鲁剑巍. 油菜对钾的反应及钾肥有效施用配套技术的研究. 北京: 中国农业大学, 1999. [41] Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology & Biochemistry, 2009, 41(6): 1301-1310. [42] Islam S M M, Gaihre Y K, Biswas J C, et al. Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield. Agricultural Water Management, 2018, 196: 144-153. [43] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 2006, 37(11): 1477-1488. |